단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells

  • 신현아 (마리아기초의학연구소/마리아생명공학연구소) ;
  • 김은영 (마리아기초의학연구소/마리아생명공학연구소) ;
  • 이금실 (마리아기초의학연구소/마리아생명공학연구소) ;
  • 조황윤 (마리아기초의학연구소/마리아생명공학연구소) ;
  • 이원돈 (마리아불임병원) ;
  • 박세필 (마리아기초의학연구소/마리아생명공학연구소) ;
  • 임진호 (마리아불임병원)
  • Shin Hyun-Ah (Maria Infertility Hospital Medical Institute/Maria Biotech) ;
  • Kim Eun-Young (Maria Infertility Hospital Medical Institute/Maria Biotech) ;
  • Lee Keum-Sil (Maria Infertility Hospital Medical Institute/Maria Biotech) ;
  • Cho Hwang-Yun (Maria Infertility Hospital Medical Institute/Maria Biotech) ;
  • Lee Won-Don (Maria Infertility Hospital) ;
  • Park Se-Pill (Maria Infertility Hospital Medical Institute/Maria Biotech) ;
  • Lim Jin-Ho (Maria Infertility Hospital)
  • 발행 : 2006.03.01

초록

본 연구는 단위발생유래 생쥐 배아줄기세포(P-mES)지가 체외수정유래 생쥐 배아줄기세포 (mES)와 마찬가지로 기능성 심근세포로 체외 분화되는지를 조사하였다. 각 세포주 P-mES04와 MES03를 4일간 부유 배양하여 배아체 (EB)를 형성한 다음 4일간 DMSO를 추가적으로 처리한 뒤 젤라틴이 코팅된 배양접시에 부착시켰다(4-/4+). P-mES04와 mES03으로부터 수축성 심근세포 생성 여부를 30일간 관찰한 결과, 각각 13일(69.83%)과 22일 (61.3%)에 누적 형성율이 가장 높았다. 면역 세포화학염색 결과, 수축성을 나타내는 P-mES04 세포는 수축성 mES03 세포에서와 같이 근육 특이적인 anti-sarcomeric a-actinin 항체와 심근 특이적인 anti-cardiac troponin I 항체에 염색되는 것을 확인하였다. 또한 RT-PCR 결과, 수축성을 나타내는 P-mES04 세포는 심근특이적인 L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4와 atrial natriuretic factor는 발현하나, 골격근 특이적인 L-type calcium channel, a1S는 발현하지 않아 웅성 성체의 심장세포와 유사한 양상을 보였다. 본 연구의 결과는 단위발생 유래 생쥐 배아 줄기세포를 배아줄기세포의 연구의 대체제로 이용할 수 있음을 보여준다.

This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

키워드

참고문헌

  1. Allen ND, Barton SC, Kathy Hilton, Norris ML, Surani MA (1994): A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120:1473-1482
  2. Andressen C, Stocker E, Klinz FJ, Lenka N, Hescheler J, Fleischmann B, Arnhold S, Addicks K (2001): Nestin-specific green fluorescent protein expression in embryonic stem cell-derived neural precursor cells used for transplantation. Stem Cells 19: 419-424 https://doi.org/10.1634/stemcells.19-5-419
  3. Boon CH, Husnain KH, Eugene KWS, Tong C, Soon CN (2004): Strategies for directing the differentiation of stem cells into th cardiomyogenic lineage in vitro. Cardiovasc Reserch 62:34-42 https://doi.org/10.1016/j.cardiores.2003.12.022
  4. Carlo V, Margherita M (2000): Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ Res 87:89-94
  5. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002): Parthenogenetic stem cells in nonhuman primates. Science 295:819-820 https://doi.org/10.1126/science.1065637
  6. Delot EC (2003): Control of endocardial cushion and cardiac valve maturation by BMP signaling pathways. Mol Genet Metab 80:27-35 https://doi.org/10.1016/j.ymgme.2003.07.004
  7. Doetschman TC, Eistetter H, Kata M, Schmidt W, Kemler R (1985): The in vitro development of blastocyst- derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27-45
  8. Evans MJ, Kaufman MH (1981): Establishment in culture of pluripotential cells from moues embryos. Nature 292:154-156 https://doi.org/10.1038/292154a0
  9. Gryshchenko O, Fischer IR, Dittrich M, ViatchenkoKarpinski S, Soest J, Bohm-Pinger M, Igelmund P, Fleischmann BK, Hescheler J (1999): Role of ATP-dependent $K^+$ channels in the electrical excitability of early embryonic stem cell-derived cardiomyocytes. J Cell Sci 112:2903-2912
  10. Heinrich S, Theben T, Hescheler J, Lindner M, Brandt MC, Wartenberg M (2001): Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am J Physiol Heart Circ Physiol 281:H411-H421 https://doi.org/10.1152/ajpheart.2001.281.1.H411
  11. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM (1997): Addicks K. embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Car-diovasc Res 36:408-428 https://doi.org/10.1016/S0008-6363(97)00184-3
  12. Hiromi T, Kyoko H, Taksshi K, Akio I, Taksyuki M (2004): Wnt 11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun 325:968-975 https://doi.org/10.1016/j.bbrc.2004.10.103
  13. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, ItskovitzEldor J, Gepstein L (2001): Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J clin Invest 108:407-414 https://doi.org/10.1172/JCI200112131
  14. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996): Genetically selected cardiomyocytes from differentiation embryonic stem cells from stable intracardic grafts. J clin Invest 98:216-224 https://doi.org/10.1172/JCI118769
  15. Martin GR (1981): Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc Nat!lAcad Sci USA 78:7634-7638
  16. Muller M, Flechmann BK, Selnert S, Ji GJ, Endl E, Middeler G, Muller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM (2000): Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB 14:2540-2548 https://doi.org/10.1096/fj.00-0002com
  17. Narita N, Bielinska M, Wilson DB (1997): Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 124:3755-3764
  18. Park JI, Yoshida I, Tada T, Takagi N, Takahashi Y, Kanagawa H (1998): Differentiative potential of a mouse parthenogenetic embryonic stem cell line revealed by embryoid body formation in vitro. Jpn J Vet Res 46:19-28
  19. Park SP, Kim EY, Lee KS, Lee YJ, Shin HA, Min HJ, Lee HT, ChlU1g KS, Lim JH (2002): Parthenogenetic mouse embryonic stem cells have similar characteristics to in vitro Fertilization mES cells. Korean J Fertil Steril 29:129-138
  20. Xuan Z, Emily Q, Gallicano GI (2003): Differentiation of nonbeating stem cells into beating cardiomyocytes is dependent on downregulation of PKC and in concert with upregulation of PKC. Dev Biolo 255:407-422 https://doi.org/10.1016/S0012-1606(02)00080-5