Two Algorithms for Constructing the Voronoi Diagram for 3D Spheres and Applications to Protein Structure Analysis

삼차원 구의 보로노이 다이어그램 계산을 위한 두 가지 알고리듬 및 단백질구조채석에의 응용

  • 김동욱 (한양대학교 Voronoi Diagram 연구단) ;
  • 조영송 (한양대학교 Voronoi Diagram 연구단) ;
  • 김덕수 (한양대학교 산업공학과)
  • Published : 2006.04.01

Abstract

Voronoi diagrams have been known for numerous important applications in science and engineering including CAD/CAM. Especially, the Voronoi diagram for 3D spheres has been known as very useful tool to analyze spatial structural properties of molecules or materials modeled by a set of spherical atoms. In this paper, we present two algorithms, the edge-tracing algorithm and the region-expansion algorithm, for constructing the Voronoi diagram of 3D spheres and applications to protein structure analysis. The basic scheme of the edge-tracing algorithm is to follow Voronoi edges until the construction is completed in O(mn) time in the worst-case, where m and n are the numbers of edges and spheres, respectively. On the other hand, the region-expansion algorithm constructs the desired Voronoi diagram by expanding Voronoi regions for one sphere after another via a series of topology operations, starting from the ordinary Voronoi diagram for the centers of spheres. It turns out that the region-expansion algorithm also has the worst-case time complexity of O(mn). The Voronoi diagram for 3D spheres can play key roles in various analyses of protein structures such as the pocket recognition, molecular surface construction, and protein-protein interaction interface construction.

Keywords

References

  1. Angelov, B., Sadoc, J.-F., Jullien, R., Soyer, A., Momon, J.-P. and Chomilier, J., 'Nonatomic Solventdriven Voronoi Tessellation of Proteins: An Open Tool to Analyze Protein Folds', Proteins: Structure, Function, and Genetics, Vol. 49, No.4, pp. 446-456, 2002 https://doi.org/10.1002/prot.10220
  2. Aurenhammer, F., 'Power Diagrams: Properties, Algorithms and Applications', SIAM Journal of Computing, Vol. 16, pp. 78-96, 1987 https://doi.org/10.1137/0216006
  3. Boissonnat, J. D. and Karavelas, M. I., 'On the Combinatorial Complexity of Euclidean Voronoi Cells and Convex Hulls of $\delta$-dimensional Spheres', in Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 305-312, 2003
  4. Gavrilova, M., Proximity and Applications in General Metrics. Ph.D. thesis: The University of Calgary, Dept. of Computer Science, Calgary, AB, Canada; 1998
  5. Gavrilova, M. and Rokne, J., 'Updating the Topology of the Dynamic Voronoi Diagram for Spheres in Euclidean $\delta$-dimensional Space,' Computer Aided Geometric Design, Vol. 20, No.4, pp. 231-242, 2003 https://doi.org/10.1016/S0167-8396(03)00027-X
  6. Goede, A., Preissner, R. and Fromrnel, C; 'Voronoi Cell: New Method for Allocation of Space Among Atoms: Elimination of Avoidable Errors in Calculation of Atomic Volume and Density', Journal of Computational Chemistry, Vol. 18, No.9, pp. 1113-1123, 1997 https://doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1113::AID-JCC1>3.0.CO;2-U
  7. Goodrich, M. T. and Tamassia, R., Data Structures and Algorithms in Java. 2nd ed. New York: John Wiley & Sons, 200l
  8. Kim, D.-S., Cho, Y. and Kim, D., 'Edge-tracing Algorithm for Euclidean Voronoi Diagram of 3D Spheres', in Proc. of the 16th Canadian Conference on Computational Geometry, pp. 176-179, 2004
  9. Kim, D.-S., Cho, Y., Kim, D., Kim, S., Bhak, J. and Lee, S.-H. 'Euclidean Voronoi Diagrams of 3D Spheres and Applications to Protein Structure Analysis', In Proc. of the international Symposium on Voronoi Diagrams in Science and Engineering, pp. 137-144, 2004
  10. Kim, D..S., Cho, Y., Kim, D., Kim, S., Bhak, J. and Lee, S.-H. 'Euclidean Voronoi Diagrams of 3D Spheres and Applications to Protein Structure Analysis', Japan Journal of Industrial and Applied Mathematics, Vol. 22, No.2, pp. 251-265, 2005 https://doi.org/10.1007/BF03167441
  11. Kim, D.-S., Cho, Y. and Kim, D., 'Euclidean Voronoi Diagram of 3D Balls and Its Computation via Tracing Edges', Computer-Aided Design, Vol. 37, No. 13, pp. 1412-1424, 2005 https://doi.org/10.1016/j.cad.2005.02.013
  12. Luchnikov, V. A., Medvedev, N. N., Oger, L. and Troadec, J.-P. 'Voronoi-Delaunay Analysis of Voids in Systems of Nonspherical Particles', Physical Review E, Vol. 59, No.6, pp. 7205-7212, 1999 https://doi.org/10.1103/PhysRevE.59.7205
  13. Montoro, J. C. G. and Abascal, J. L. F., 'The Voronoi Polyhedra as Tools for Structure Determination in simple Disordered Systems', The Journal of Physical Chemistry, Vol. 97, No. 16, pp. 4211-4215, 1993 https://doi.org/10.1021/j100118a044
  14. Naberukhin, Y. I., Voloshin, V. P. and Medvedev, N. N., 'Geometrical Analysis of the Structure of simple Liquids: Percolation Approach', Molecular Physics, Vol. 73, pp. 917-936, 1991 https://doi.org/10.1080/00268979100101651
  15. Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2nd ed. Chichester: John Wiley & Sons, 1999
  16. Richards, F. M., 'The Interpretation of Protein Structures: Total Volume, Group Volume Distributions and Packing Density', Journal of Molecular Biology, Vol. 82, pp. 1-14, 1974 https://doi.org/10.1016/0022-2836(74)90570-1
  17. Sastry, S., Corti, D. S., Debenedetti, P. G. and Stillinger, F. H., 'Statistical Geometry of Particle Pac kings. I. Algorithm for Exact Determination of Connectivity, Volume, and Surface Areas of Void Space in Monodisperse and Polydisperse Sphere Packings', Physical Review E, Vol. 56, pp. 5524.5532, 1997 https://doi.org/10.1103/PhysRevE.56.5524
  18. Voloshin, V. P., Beaufils, S. and Medvedev, N. N., 'Void Space Analysis of the Structure of Liquids', Journal of Molecular Liquids, Vol. 96-97, pp. 101-112, 2002 https://doi.org/10.1016/S0167-7322(01)00330-0
  19. Will, H.-M., Computation of Additively Weighted Voronoi Cells for Applications in Molecular Biology. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1999
  20. RCSB Protein Data Bank Homepage. http://www. rcsb.org/pdb/
  21. 김정민, 조영송, 이병훈 ,서정연 ,박상민, 원정인, 김동욱, 김덕수, '단백질간의 상호작용 인터페이스: 보로노이 다이어그램을 이용한 접근법', 한국 CAD/CAM학회 학술발표회 논문집, pp. 936-941, 2005
  22. 류중현, 박노훈, 이병훈, 조영송, 김동욱, 김덕수, '단백질의 Molecular Surface 계산: 보로노이 다이어그램과 볼 블렌딩을 이용한 접근법', 한국 CAD/CAM학회 학술발표회 논문집, pp. 931-935, 2005
  23. 이상헌, 이건우, '비다양체 형상 모델링을 위한 간결한 경계 표현 및 확장된 오일러 작업자', 한국 CAD/CAM학회 논문집, Vol. 1, No.1, pp. 1-19, 1996
  24. 조철형, 조영송, 김동욱, 김덕수, '단백질의 포켓인식 : 보로노이 다이어그램과 convex hull을 이용한 접근법' 한국 CAD/CAM학회 학술발표회 논문집, pp. 685-688, 2005
  25. 최국헌, 한순흥, 이현찬, '선택 저장을 이용한 복합 다양체 자료구조', 한국 CAD/CAM학회 논문집, Vol. 2, No.3, pp. 150-160, 1997