The Journal of the Korea Contents Association (한국콘텐츠학회논문지)
- Volume 6 Issue 1
- /
- Pages.179-189
- /
- 2006
- /
- 1598-4877(pISSN)
- /
- 2508-6723(eISSN)
Design of a Forecasting Model for Customer Classification in the Telecommunication Industries
통신 산업의 고객 분류를 위한 예측 모델 설계
- Published : 2006.01.01
Abstract
Recently, according to the development of computer technology, a large amount of customer data have been stored in database. Using such data, decision makers extract the useful information to make a valuable plan with data mining. In this paper, we design a forecasting model that classifies the exiting customers in the telecommunication industries using the classification rule, one of the data mining technologies. In other words, this paper builds a model of customer loyalty detection and analyzes customer patterns in mobile communication service market with data mining using neural network and regression methods. This model improves the relationship of customers and enterprises. As a result, the enterprise creates the profits from many customers and the customer receives more benefits from the enterprise.
최근 데이터 수집 및 저장기술의 발달, 데이터베이스 관리시스템과 데이터웨어하우스 기술의 광범위한 사용은 기업내부의 대량의 데이터를 축적할 수 있도록 하고 있으며, 축적된 데이터는 의사결정에 필요한 새롭고 가치 있는 정보와 지식을 획득할 수 있는 잠재적인 원천으로 인정되고 있다. 본 논문에서는 이동통신업체의 데이터를 가지고 데이터 마이닝 방법론을 이용하여 기존고객을 세분화하기 위한 예측모델을 설계한다. 이를 통해 고객 개개인의 특성에 맞는 마케팅 프로모션을 하게 하고 신규고객을 획득할 때는 신규 고객의 특성을 미리 예측하여 세분화함으로써 고객의 평생가치를 촉진하여 기업과 고객과의 관계성을 높여서 기업은 안정된 고객층으로부터 수익을 창출하고 고객들은 해당 기업으로부터 더 많은 혜택을 받게 하는데 목적이 있다.
Keywords