Factors to Affect the Growth of Filamentous Periphytic Algae in the Artificial Channels using Treated Wastewater

하수처리수를 이용한 인공수로에서 사상성 부착조류의 성장에 영향을 미치는 요인들

  • Park, Ku-Sung (Department of Environmental Science, Konkuk University) ;
  • Kim, Ho-Sub (Total Wafer Pollution Load Research Division, National Institute of Environmental Research) ;
  • Kong, Dong-Soo (Han River Environment Research Laboratory, National Institute of Environmental Research) ;
  • Shin, Jae-Ki (Korea Institute of Water and Environment, Korea Water Resources Cooperation) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 박구성 (건국대학교 환경과학과) ;
  • 김호섭 (국립환경과학원 환경총량관리연구부 수질총량과) ;
  • 공동수 (국립환경과학원 한강물환경연구소) ;
  • 신재기 (한국수자원공사 수자원연구원) ;
  • 황순진 (건국대학교 환경과학과)
  • Published : 2006.03.31

Abstract

This study evaluated the effects of water velocity, substrates, and phosphorus concentrations on the growth of filamentous periphytic algae (FPA) in the two types of artificial channel systems using treated wastewater. Controlled parameters included 5 ${\sim}$ 15 cm $s^{-1}$ for the water velocity; 10 and 20 mm wire meshes, natural fiber net, gravel and tile for the substrates: and 0.05 ${\sim}$ 1.0 mgP $L^{-1}$ for the P concentration. Algal growth rate of FPA was compared using both chi. a and dry weight change with time. Under the controlled water velocity range, the growth of FPA increased with the velocity, but the maximum growth rate was shown in the velocity of 10 cm $s^{-1}$. The substrate that showed the maximum growth of FPA differed between the artificial channel and indoor channel, due to the influence of suspended matters which caused the clogging of the meshed substrates. Under the controled range of P concentration, the growth rates of all three FPA species (Spirogyra turfosa, Oedogonium fovelatum, Rhizoclonium riparium) increased with the P increase, but they showed the differential growth rates among different P concentrations. The results of this study suggest that under the circumstance having an large amount of nutrients FPA develop the biomass rapidly and that even a little increase over the threshold velocity causes the detachment of filamentous periphytic algae. Thus, FPA dynamics in eutrophic streams, such as those receiving treated wastewater, seem to be sensitive to the water velocity. On the other hand, detached algal filaments could deteriorate water quality and ecosystem function in receiving streams or down-stream, and thus they need to be recognized as an important factor in water quality management in eutrophic streams.

본 연구는 영양염이 풍부한 하수처리수를 이용한 인공수로에서 사상성 부착조류의 성장에 미치는 요인들(유속. 부착기질, 인 농도)을 평가하였다. 실험은 하수처리수를 이용한 현장 인공수로와 실내 순환수로에서 부착조류의 성장실험을 수행하였고, 서로 다른 인 농도에서의 사상성 부착조류 종간의 성장률과 인 흡수율을 비교하였다. 조절된 유속조건(5 ${\sim}$ 15 cm $s^{-1}$)에서 사상성 부착조류의 순생산성은 유속이 빠를수록 높았으나 최대의 순생산성은 10 cm $s^{-1}$ 유속에서 나타났다. 현장 인공수로와 실내순환수로 실험 간에 사상성부착조류의 최대성장은 기질에 따라 다르게 나타났다. 부유물질이 충분히 제거되지 않았던 현장 인공수로 실험에서는 망목이 20 mm인 철망에서, 실내순환수로 실험에서 사상성 부착조류의 성장은 자연섬유망에서 높게 나타났다. 0.05 ${\sim}$ l.0 mg P $L^{-1}$로 조절된 인 농도범위에서 3종의 사상성 부착조류 성장률은 인 농도가 높아짐에 따라 증가하였으나, 각 종들은 인 농도에서 따라 차별적인 성장을 나타냈다. 또한 영양염 농도가 매우 높은 환경에서 사상성 부착조류 생물량의 발달이 크면 클수록 높은 유속이 사상체의 탈리를 유발하여 조류의 성장을 감소시키는 제한요인으로 작용할 수 있음이 제시되었다. 탈리된 사상체는 연결된 하천, 저수지, 하류의 수질과 생태계를 악화시킬 수 있기 때문에 하천 수질관리에 있어 중요한 요인으로 고려한 필요성이 크다.

Keywords

References

  1. 공동수, 천세억, 류재근. 1996. 대형수생식물 및 부착조류를 이용한 호수질정화 및 수확물의 재이용. 한.일 지방간 생태 공학적 수질개선 공법에 관한 심포지움, 강원대학교 환경 연구소. 115-154
  2. 공동수, 천세억. 1999. 인공수로내 사상성 부착조류의 증식속도 및 영양물질 제거능. 한국육수학회지 32: 217-232
  3. 농림부, 2003. 부착조류를 이용한 농촌유역 수질개선 기법개발
  4. 정연태, 이종빈, 위인선, 김백호, 최민규, 1996. 수질오염 판정을 위한 기법 개발 (I). 부착조류 군체화에 미치는 기질특이성 연구. 환경생물 14: 95-111
  5. 신재기, 조경제. 1998. 대청천에서 부착조류의 1차 생산성. 한국육수학회지 31: 294-302
  6. 조경제. 1994. 인공기질을 이용한 부착조류 조사. 한국육수학회지 27: 47-57
  7. 황순진, 공동수. 1999. 습지의 인 Sink 기능에 영향을 미치는 생물학적 요인들. 한국육수학회지 32: 79-91
  8. APHA. 1995. Standard Methods for the Analysis of Water and Wastewater, 17th ed. American Public Health Association, Inc., Washington, D.C
  9. Borchardt, M.A. 1996. Nutrients. pp. 183-227. In: Algal Ecology-Freshwater and benthic ecosystems (Stevenson, R.J., M.L. Bothwell, and R.L. Rove, eds). Academic Press, New York
  10. Borchardt, M.A., J.P. Hoffman and P.W. Cook. 1994. Phosphorus uptake kinetics of Spirogyra fluviatilis (Charophyceae) in flowing water. J. Phycol. 30: 403- 417 https://doi.org/10.1111/j.0022-3646.1994.00403.x
  11. Fairchild, I.W. and R.L. Love. 1984. Artificial substrates which release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia. 114: 29-37 https://doi.org/10.1007/BF00016599
  12. Goldsborugh, L.G. and M. Hickman. 1991. A comparison of periphytic algae biomass and community structure on Scirpus validus and on a morphologically similar artificial substratum. J. Phycol. 27: 196-206 https://doi.org/10.1111/j.0022-3646.1991.00196.x
  13. Horner, R.R. and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fish. and Aquat. Sci. 38: 449-457 https://doi.org/10.1139/f81-062
  14. Horner, R.R., E.B. Welch and R.B. Veenstra. 1983. Development of nuisance periphytic algae in laboratory stream in relation to enrichment and velocity. pp. 121-134. In: Periphyton of freshwater Ecosystems. (Ed. R.G. Wetzel). Dr w. Junk Publishers, The Hague
  15. Horner, R.R., E.B. Horner, M.R. Welch, Seeley and J.M. Jacoby. 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology. 24: 215-232 https://doi.org/10.1111/j.1365-2427.1990.tb00704.x
  16. Hwang, S-J., A.D. Steinman and K.E. Havens. 1998. Phosphorus uptake kinetics in a large shallow subtropical lake. Freshwater Biology. 40: 729-745 https://doi.org/10.1046/j.1365-2427.1998.00375.x
  17. Lohman, K. and J.C. Priscu. 1992. Physiological indicators of nutrient deficiency in Cladophora (Chlorophyta) in the Clark Fork of the Columbia River, Montana. J. Phycol. 28: 443-448 https://doi.org/10.1111/j.0022-3646.1992.00443.x
  18. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophyton. Freshwater Biology. 2: 361-385 https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  19. Mclntire, C.D. 1966. Some effects of current velocity on periphyton communities in laboratory streams. Hydrobiologia. 27: 559-70 https://doi.org/10.1007/BF00042713
  20. Mclntire, C.D. and H.K. Phinney. 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35: 237-58 https://doi.org/10.2307/1942138
  21. McIntire, C.D. 1968a. Physiological-ecological studies of benthic algae in laboratory streams. J. Water Pollut. Contr. Fed. 40: 1940-1952
  22. Nalewajko, C. and D.R.S. Lean. 1980. Phosphorus. pp.235- 258. In: The Physiological Ecology of Phytoplankton (I. Morris, ed.). Blackwell, Oxford
  23. Sand-Jensen K. and M. Sondergaard. 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Rev. Hydrobiologia. 66: 529-552 https://doi.org/10.1002/iroh.19810660406
  24. Steinman, A.D., E.H. Meeker, A.J. Rodusky, W.P. Davis and S.-J. Hwang. 1997. Ecological properties of Charophytes in a large, subtropical lake. J. North Am. Bonthol. Soc. 16: 781-793 https://doi.org/10.2307/1468171
  25. Stevenson, R.J. 1983. Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration. Ecology. 64: 1514-1281 https://doi.org/10.2307/1937506
  26. Thomas, D.F. and G.N. David. 1983. Characteristics of epiphyte communities on natural and artificial submersed lotic plants: Substrate effects. Arch. Hydrobiol. 3: 293-301
  27. Vymazal, J. 1988. The use of periphyton communities for nutrient removal from polluted streams. Hydrobiologia. 166: 225-237 https://doi.org/10.1007/BF00008132