References
- Arnold, B.C., Beaver, R.J., Groeneveld, R.A. and Meeker, W.Q. (1993). The nontruncated marginal of a truncated bivariate normal distribution. Psychometrica, Vol. 58, 471-478 https://doi.org/10.1007/BF02294652
- Azzalini, A (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, Vol. 12, 171-178
- Azzalini, A. and Valle, A.D. (1996). The multivariate skew-normal distribution. Biometrika, Vol. 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
- Branco, M.D. and Dey, D.K. (2001). A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis, Vol. 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
- Chen, M.H., Dey, D.K., and Shao, Q.M. (1999). A new skewed link model for dichotomous quantal response model. J oumal of the American Statistical Association, Vol. 94, 1172-1186 https://doi.org/10.2307/2669933
- Devroye, L. (1986). Non-Uniform Random Variate Generaton. New York: Springer Verlag
- DiCiccio, T.J. and Monti, AC. (2004). Inferential aspects of the skew exponential power distribution. Joumal of the American Statistical Association, Vol. 99, 439-450 https://doi.org/10.1198/016214504000000359
- Donnelly, T.G. (1973). Algorithm 426: Bivariate normal distribution. Communications of the Association for Computing Machinery, Vol. 16, 638 https://doi.org/10.1145/362375.362414
- Henze, N. (1986). A probabilistic representation of the 'Skewed-normal' distribution. Scandinavian Journal of Statistics, Vol. 13, 271-275
- Hollander, M. (1967). Rank tests for randomized blocks when the alternative have an prior ordering. The Annals of Mathematical Statistics, Vol. 38, 867-887 https://doi.org/10.1214/aoms/1177698880
- Joe, H. (1995). Approximation to multivariate normal rectangle probabilities based on conditional expectations. Journal of the American Statistical Association, Vol. 90, 957-966 https://doi.org/10.2307/2291331
- Johnson, N.L. and Katz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. New York: John Wiley
- Johnson, N.L., Katz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1. New York: John Wiley & Sons
- Kim, H.J. (2002). Binary regression with a class of skewed t link models. Communications in Statistics- Theory and Methods, Vol. 31, 1863-1886 https://doi.org/10.1081/STA-120014917
- Ma, Y. and Genton, M.G. (2004). A flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, Vol. 31, 459-468 https://doi.org/10.1111/j.1467-9469.2004.03_007.x
- Sugiura, N. and Gomi, A. (1985). Pearson diagrams for truncated normal and truncated Weibull distributions. Biometrika, Vol. 72, 219-222 https://doi.org/10.1093/biomet/72.1.219
- Weinstein, M.A. (1964). The sum of values from a normal and a truncated normal distribution (Answer to Query). Technometrics, Vol. 6, 104-105 and 469-471 https://doi.org/10.2307/1266751
- Zacks, S. (1981). Parametric Statistical Inference, Pregamon Press, Oxford