DOI QR코드

DOI QR Code

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS OF UNBOUNDED FUNCTIONS II

  • Yoo, Il (Department of Mathematics Yonsei University) ;
  • Song, Teuk-Seob (Department of Mathematics Yonsei University) ;
  • Kim, Byoung-Soo (School of Liberal Arts Seoul National University of Technology)
  • Published : 2006.01.01

Abstract

Cameron and Storvick discovered change of scale formulas for Wiener integrals of bounded functions in a Banach algebra S of analytic Feynman integrable functions on classical Wiener space. Yoo and Skoug extended these results to abstract Wiener space for a generalized Fresnel class $F_{A1,A2}$ containing the Fresnel class F(B) which corresponds to the Banach algebra S on classical Wiener space. In this paper, we present a change of scale formula for Wiener integrals of various functions on $B^2$ which need not be bounded or continuous.

Keywords

References

  1. J. M. Ahn, G. W. Johnson and D. L. Skoug, Functions in the Fresnel Class of an Abstract Wiener Space, J. Korean Math. Soc. 28 (1991), no. 2, 245-265
  2. R. H. Cameron, The Translation Pathology of Wiener Space, Duke Math. J. 21 (1954), 623-628 https://doi.org/10.1215/S0012-7094-54-02165-1
  3. R. H. Cameron and W. T. Martin, The Behavior of Measure and Measurability under Change of Scale in Wiener Space, Bull. Amer. Math. Soc. 53 (1947), 130-137 https://doi.org/10.1090/S0002-9904-1947-08762-0
  4. R. H. Cameron and D. A. Storvick, Some Banach Algebras of Analytic Feynman Integrable functionals, in Analytic Functions, Kozubnik, Lecture Notes in Math. 798 (1980), 18-27 https://doi.org/10.1007/BFb0097256
  5. R. H. Cameron and D. A. Storvick, Change of Scale Formulas for Wiener Integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 105-115
  6. R. H. Cameron and D. A. Storvick, Relationships between the Wiener Integral and the Analytic Feynman Integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 117-133
  7. R. H. Cameron and D. A. Storvick, New Existence Theorems and Evaluation Formulas for Analytic Feynman Integrals, Deformations of Mathematics Structures, 297-308, Kluwer, Dordrecht, 1989
  8. K. S. Chang, Scale-Invariant Measurability in Yeh-Wiener Space, J. Korean Math. Soc. 21 (1982), no. 1, 61-67
  9. K. S. Chang, G. W. Johnson and D. L. Skoug, Necessary and Sufficient Con- ditions for the Fresnel Integrability of Certain Classes of Functions, J. Korean Math. Soc. 21 (1984), no. 1, 21-29
  10. K. S. Chang, G. W. Johnson and D. L. Skoug, Functions in the Fresnel Class, Proc. Amer. Math. Soc. 100 (1987), 309-318 https://doi.org/10.2307/2045963
  11. K. S. Chang, G. W. Johnson and D. L. Skoug, Necessary and Sufficient Conditions for Membership in the Banach Algebra S for Certain Classes of Functions, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 153-171
  12. K. S. Chang, G. W. Johnson and D. L. Skoug, Functions in the Banach Algebra S(v), J. Korean Math. Soc. 24 (1987), no. 2, 151-158
  13. K. S. Chang, B. S. Kim and I. Yoo, Analytic Fourier-Feynman Transform and Convolution of Functionals on Abstract Wiener Space, Rocky Mountain J. Math. 30 (2000), 823-842 https://doi.org/10.1216/rmjm/1021477245
  14. D. M. Chung, Scale-Invariant Measurability in Abstract Wiener Space, Paciffic J. Math. 130 (1987), 27-40 https://doi.org/10.2140/pjm.1987.130.27
  15. L. Gross, Abstract Wiener Space, Proc. 5th Berkeley Sympos. Math. Stat. Prob. 2 (1965), 31-42
  16. G. W. Johnson and D. L. Skoug, Scale-Invariant Measurability in Wiener Space, Paciffic J. Math. 83 (1979), 157-176 https://doi.org/10.2140/pjm.1979.83.157
  17. G. W. Johnson and D. L. Skoug, Stability Theorems for the Feynman Integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 8 (1985), 361-367
  18. G. Kallianpur and C. Bromley, Generalized Feynman Integrals using Analytic Continuation in Several Complex Variables, in Stochastic Analysis and Applica- tions (ed. M.H. Pinsky), 433-450, Dekker, New York, 1984
  19. G. Kallianpur, D. Kannan and R. L. Karandikar, Analytic and Sequential Feyn- man Integrals on Abstract Wiener and Hilbert Spaces and a Cameron-Martin Formula, Ann. Inst. Henri Poincare, 21 (1985), 323-361
  20. H. H. Kuo, Gaussian Measures in Banach Spaces, Springer Lecture Notes in Math. 463 (1975), Berlin-New York
  21. I. Yoo and K. S. Chang, Notes on Analytic Feynman Integrable Functions, Rocky Mountain J. Math. 23 (1993), 1133-1142 https://doi.org/10.1216/rmjm/1181072548
  22. I. Yoo and D. L. Skoug, A Change of Scale Formula for Wiener Integrals on Abstract Wiener Spaces, Internat. J. Math. Math. Sci. 17 (1994), 239-248 https://doi.org/10.1155/S0161171294000359
  23. I. Yoo and D. L. Skoug, A Change of Scale Formula for Wiener Integrals on Abstract Wiener Spaces II, J. Korean Math. Soc. 31 (1994), 115-129
  24. I. Yoo, T. S. Song, B. S. Kim and K. S. Chang, A Change of Scale Formula for Wiener Integrals of Unbounded Functions, Rocky Mountain J. Math. 34 (2004), 371-389 https://doi.org/10.1216/rmjm/1181069911
  25. I. Yoo and G. J. Yoon, Change of Scale Formulas for Yeh-Wiener Integrals, Commun. Korean Math. Soc. 6 (1991), no. 1, 19-26

Cited by

  1. Change of Scale Formulas for Wiener Integrals Related to Fourier-Feynman Transform and Convolution vol.2014, 2014, https://doi.org/10.1155/2014/657934
  2. RELATIONSHIP BETWEEN THE WIENER INTEGRAL AND THE ANALYTIC FEYNMAN INTEGRAL OF CYLINDER FUNCTION vol.27, pp.2, 2014, https://doi.org/10.14403/jcms.2014.27.2.249
  3. Fourier-Feynman transforms of unbounded functionals on abstract Wiener space vol.8, pp.3, 2010, https://doi.org/10.2478/s11533-010-0019-2
  4. CHANGE OF SCALE FORMULAS FOR FUNCTION SPACE INTEGRALS RELATED WITH FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION ON Ca,b[0, T] vol.23, pp.1, 2015, https://doi.org/10.11568/kjm.2015.23.1.47
  5. Integration by parts formulas for analytic Feynman integrals of unbounded functionals vol.20, pp.1, 2009, https://doi.org/10.1080/10652460802442299
  6. GENERALIZED ANALYTIC FEYNMAN INTEGRAL VIA FUNCTION SPACE INTEGRAL OF BOUNDED CYLINDER FUNCTIONALS vol.48, pp.3, 2011, https://doi.org/10.4134/BKMS.2011.48.3.475