A K Least Time Paths Searching Algorithm for Time Dependent Intermodal Transportation Networks with Departure Time Schedule Constraints

출발시간제약이 존재하는 동적 복합교통망의 K최소시간경로탐색

  • 조종석 (서울시정개발연구원 도시교통연구부) ;
  • 신성일 (서울시정개발연구원 도시교통연구부) ;
  • 문병섭 (한국건설기술연구원 도로연구부) ;
  • 임강원 (서울대학교 환경대학원)
  • Published : 2006.05.31

Abstract

An minimum path algorithm for integrated networks with departure time constraints require considering arrival time of arriving mode, transfer time. waiting time, and departure time of next mode. Integrated network with diverse modes commonly include departure time constraints. Because public mode suck as train and airplane have fixed service schedule which provide passengers. This study developed the k-path algorithm in integrated network with time varying conditions and departure time constraints. We proposed the extended method based on entire path deletion method, and examined the application of the proposed algorithm through case study.

출발시간제약이 존재하는 통합교통망의 최소시간경로탐색은 도착수단의 도착시간 수단간 환승시간, 대기시간 뿐만 아니라. 다음수단의 출발시간을 고려하는 것이 필요하다. 다수의 교통수단이 존재하는 통합교통망에서는 출발시간제약이 포함되는 경우가 매우 일반적인 현상이다. 이는 철도나 항공 등과 같은 대중교통노선들은 일정한 시간에 서비스를 제공하는 노선별 스케줄을 가지고 있기 때문이다. 본 연구에서는 이러한 출발시간제약조건이 존재하는 통합교통망을 통행시간이 시간대에 따라 동적으로 변화하는 상황에서 K개의 경로를 탐색하는 알고리즘을 개발하고자 한다. 그리고, 이러한 알고리즘개발을 위하여 유입링크기반의 전체경로삭제방식을 확대 적용하는 방안을 제안하며, 사례연구를 통하여 알고리즘의 활용성을 검토한다.

Keywords

References

  1. 신성일 (2004), 교통망에 적합한 K 비루프 경로 탐색 알고리즘, 대한교통학회지, 제22권 제6호, 대한교통학회, pp.121-131
  2. 장인성 (2000), 서비스시간 제약이 존재하는 도시 부 복합교통망을 위한 링크기반의 최단경로탐색 알 고리즘, 대한교통학회지, 제18권 제6호, 대한교통 학회, pp.111-121
  3. Bellman R. (1957), Dynamic Programming, Princeton University Press, Princeton, New Jersey
  4. Chen Y. L. and Tang K. (1997), Shortest Paths in Time‐Schedule Networks, International Journal of Operations and Quantitative Management, 3, pp.157-173
  5. Chen Y. L. and Tang K. (1998), Minimum Time Paths in A Network with Mixed Time Constraints, Computer Ops Res. Vol. 25, No. 10, pp.793-805 https://doi.org/10.1016/S0305-0548(98)00020-3
  6. Dijkstra E. W. (1959), A Note of Two Problems in Connected with Graphs. Numerical Mathematics. I, pp.269-271 https://doi.org/10.1007/BF01386390
  7. Desaulniers J. and Villeneuve D. (2000), The Shortest Path Problem with Time Windows and Linear Waiting Costs. Transportation Science, pp.312-319
  8. Desrosiers J. and Soumis F. (1988), A Generalized Permanent Labeling Algorithm for the Shortest Path Problem with Time Windows. INFOR, 26. pp.191-211
  9. Lee M. (2004), Transportation Network Models and Algorithms Considering Directional Delay and Prohibition for Intersection Movement, Ph.D. Dissertation, University of Wisconsin Madison
  10. Lo H.K., Yip C.W. and Wan K.H. (2003), Modeling Transfer and Non‐Linear Fare Structure in Multi Modal Network, Transportation Research Part B, pp.149-170
  11. Martins E.Q.V. (1984), An Algorithm for Ranking Paths that May Contain Cycles, European Journal of Operational Research, Vol. 18, pp.123-130 https://doi.org/10.1016/0377-2217(84)90269-8
  12. Pollack M. (1961), The Kth Best Route Through A Network, Operations Research, Vol. 9, pp.578-580 https://doi.org/10.1287/opre.9.4.578
  13. Potts R.B. and Oliver R.M.(1972), Flows in Transportation Networks. Academic Press
  14. Sancho N.G.F. (1994), Shortest Path Problems with Time Windows on Nodes and Arcs, Journal of Mathematical Analysis and Applications, pp.643-648
  15. Shier R. D. (1979), On Algorithms from Finding the k Shortest Paths in a Network, Networks, Vol. 9, pp.195-214 https://doi.org/10.1002/net.3230090303
  16. Solomon, M. M. (1987), Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints, Operations Research, 35, pp.254-265 https://doi.org/10.1287/opre.35.2.254
  17. Tong C.O. and Richardson A.J. (1984), A Computer Model for Finding the Time Dep endent Minimum Path in Transit Systems with Fixed Schedules, Journal of Advanced Transportation 18, pp.145-161 https://doi.org/10.1002/atr.5670180205
  18. Yang H.H. and Chen Y.L. (2005), Finding K Shortest Looping Paths in A Traffic‐ Light Network, Computer & Operations Research, 32, pp.571-581 https://doi.org/10.1016/j.cor.2003.08.004
  19. Yen J.Y. (1971), Finding the K shortest Loopless Paths in a Network, Management Science, Vol.17, pp.711-715