타입 k 가우시안 정규기저를 갖는 유한체의 병렬곱셈 연산기

A Multiplier for Type k Gaussian Normal Basis

  • 발행 : 2006.01.01

초록

유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 타입 I의 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 이를 이용하기 위하여 타입 (m,k) 인 가우스 주기를 갖는 유한체 중에서 $GF(mk+1)^{\ast}$=<2>를 만족하는 유한체 $GF(2^m)$을 타입 I 최적 정규기저를 갖는 유한체인 $GF(2^{mk})$의 부분체인 것을 이용한 새로운 병렬곱셈 연산기를 제안하였으며, 이러한 곱셈기는 암호학적으로 널리 응용되는 타입 k=2, 4, 6등의 경우에 기존에 알려진 가장 효율적인 Reyhani-Masoleh 과 Hasan의 연산기와 같은 복잡도를 갖는 효과적인 연산기이다.

In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier

키워드

참고문헌

  1. A. Reyhani-Masolleh and M.H. Hasan, 'A new construction of Massey-Omura parallel multiplier over $GF(2^m)$', IEEE Trans. vol.51 , no.5, pp. 512-520, May, 2002
  2. A. Reyhani-Masolleh and M.H. Hasan, 'Efficient multiplication beyond optimal normal bases', IEEE Trans. vol.52, no.4, pp. 428-439, April, 2003 https://doi.org/10.1109/TC.2003.1190584
  3. R. Lidl and H. Niederreiter, Introduction to finite fields and its applications, Cambridge Univ. Press, 1994
  4. A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of finitr fields, Kluwer Academic, 1993
  5. T. Itoh and S. Tsujii, 'Structure of parallel multipliers for a class of fields $GF(2^m)$', Information and Computation, vol.83, pp. 21-40, 1989 https://doi.org/10.1016/0890-5401(89)90045-X
  6. C.K. Koc and B. Sunar, 'Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields', IEEE Trans. vol.47, no.3, pp. 353-356, Mar, 1998 https://doi.org/10.1109/12.660172
  7. H. Wu and M.A. Hasan, 'Low Complexity bit-parallel multipliers for a class of finite fields', IEEE Trans. vol.47, no.8, pp. 883-887, Aug., 1998 https://doi.org/10.1109/12.660172
  8. S. Gao Jr. and H.W. Lenstra, 'Optimal normal bases', Designs, Codes and Cryptography, vol. 2, pp.315-323, 1992 https://doi.org/10.1007/BF00125200
  9. B. Sunar and C.K. Koc, 'An efficient optimal normal basis type II multiplier', IEEE Trans. vol.50, no.1, pp. 83-88, Jan., 2001 https://doi.org/10.1109/12.902754
  10. C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, 'VLSI architectures for computing multiplications and inverses in $GF(2^m)$', IEEE Trans. vol.34, no.8, pp. 709-716, Aug., 1985 https://doi.org/10.1109/TC.1985.1676616
  11. C.H. Kim, S. Oh, and J. Lim, 'A new hardware architecture for operations in $GF(2^n)$', IEEE Trans. vol.51, no.1, pp. 90-92, Jan, 2002 https://doi.org/10.1109/12.980019
  12. M.A. Hasan, M.Z. Wang, and V.K. Bhargava, 'A modified Massey-Omura parallel multiplier for a class of finite fields', IEEE Trans. vol.42, no.10, pp. 1278-1280, Oct, 1993 https://doi.org/10.1109/12.257715
  13. J.L Massey and J.K. Omura, Computational method and apparatus for finite field arithmetic, US Patent No. 4,587,627, to OMNET Assoc., Sunnyvale CA, Washington, D.C.: Patent Trademark Office, 1986
  14. IEEE P1363, Standard speciiiauions for public key cryptography, Draft 13, 1999
  15. ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft, 1998