5 GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications

  • 김지혁 (서울대학교 전기컴퓨터공학부) ;
  • 김현철 (서울대학교 전기컴퓨터공학부) ;
  • 전국진 (서울대학교 전기컴퓨터공학부)
  • Kim Ji-Hyuk (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim Hyeon Cheol (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Chun Kukjin (School of Electrical Engineering and Computer Science, Seoul National University)
  • 발행 : 2006.02.01

초록

MEMS 공정을 이용하여 작은 접지면과 광대역 특성을 가지는 소형 안테나를 제작하였다. 광대역 특성을 얻기 위해서 다층기판을 사용하였으며, 패치 안테나는 네개의 패치로 나누어져 있고 각각의 패치는 금속선으로 연결되어 있다. 한 개의 마스크 공정으로 간단한 제작이 가능하다. 두개의 마이크로스트립 안테나를 만들었다 A 타입 안테나는 패치들이 금속선으로 연결된 안테나이고 B 타입 안테나는 금속선으로 연결이 안된 안테나이다. 제안된 안테나의 크기는 $8{\times}12{\times}2mm^3$ 이었으며 측정결과 A 타입은 5.3GHz 중심주파수에 420MHz 대역폭, B 타입은 5.66 GHB중심주파수에 480MHz 대역폭을 가지는 것으로 나타났다.

A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates we used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication please process is simple and only one mask is needed. Two types of microtrip antennas are fabrication Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8{\times}12{\times}2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively

키워드

참고문헌

  1. Y. P. Zhang, 'Finite-difference time-domain analysis of integrated ceramic ball grid array package antenna for highly integrated wireless transceivers,' IEEE transactions on Antenna and Propagation, vol. 52, issue 2, pp. 435-442, February 2004 https://doi.org/10.1109/TAP.2004.823889
  2. R. Li, G. DeJean, M. Maeng, K. Lim, S. Pinel, M. M. Tentzeris, and J. Laskar, 'Design of Compact Stacked-Patch Antennas in LTCC Multilayer Packaging Modules for Wireless Applications,' IEEE. Transactions on Advanced Packaging, vol. 27, no. 4, pp.581-589, November 2004 https://doi.org/10.1109/TADVP.2004.831866
  3. Y. Ge, K. P. Esselle, and T. S. Bird, 'Broadband E-shaped patch antennas for 5-6 GHz wireless computer networks,' 2003 IEEE Antennas and Propagation Society International Symposium, vol. 2, pp.22-27, June 2003 https://doi.org/10.1109/APS.2003.1219390
  4. B. L. Ooi and C. L. Leel, 'Broadband air-filled stacked U-slot patch antenna,' Electronics Letters, vol. 35, issue 7, pp. 515-517, April 1999 https://doi.org/10.1049/el:19990367
  5. F. Croq and D. M. Pozar, 'Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas,' IEEE Transactions on Antennas and Propagation, vol. 39, issue 12, pp. 1170-1176, December 1991 https://doi.org/10.1109/8.121599
  6. K. L. Wong and W. H. Hsu, 'A broadband patch antenna with wide slits,' 2000 IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 16-21, July 2000 https://doi.org/10.1109/APS.2000.874469
  7. M. C. Huynh, W. Stutzman, 'Groundplane effects on planar inverted-F antenna (PIFA) performance,' IEE Proceedings Microwave, Antennas and Propagation, vol. 150, issue 4, pp.209-213, August 2003 https://doi.org/10.1049/ip-map:20030551
  8. R. N. Simons, D. Chun, and L. P. B. Katehi, 'Microelectromechanical systems (MEMS) actuators for antenna reconfigurability,' 2001 IEEE MIT-S International Microwave Symposium Digest, vol. 1 pp. 215-218, May 2001 https://doi.org/10.1109/MWSYM.2001.966874