다중경로 환경을 고려한 PPSM 임펄스 시스템의 성능 분석

Performance of PPSM System in multipath channel for UWB Communication

  • 박호환 (인하대학교 정보통신대학원) ;
  • 김진수 (인하대학교 정보통신대학원) ;
  • 황현철 (인하대학교 대학원) ;
  • 곽경섭 (인하대학교 정보통신대학원)
  • Park Ho-Hwan (Graduate school of Information Technology & Telecommunication, Inha University) ;
  • Kim Jin-Su (Graduate school of Information Technology & Telecommunication, Inha University) ;
  • Hwang Hyeon-Chyeol (Graduate school, Inha University) ;
  • Kwak Kyung-Sup (Graduate school of Information Technology & Telecommunication, Inha University)
  • 발행 : 2006.02.01

초록

최근, UWB 시스템은 많은 연구가들의 관심을 끌고 있다. UWB 시스템은 수$\~$수십 나노초의 임펄스를 사용함으로서 고속의 데이터를 전송할 수 있다. 본 논문에서는 기존의 UWB 임펄스 변조 방식인 PPM 변조 방식과 직교 펄스를 이용한 PSM 변조 방식의 결합 형태인 PPSM 변조 방식의 성능을 AWGN 채널 및 UWB 다중 경로 채널 표준인 SV 채널에서 분석한다. 또한 다중 경로 채널에서 좋은 성능을 보이는 M진 시스템을 위한 최적 심볼 집합을 제시한다. 모의실험을 통하여 PPSM 시스템이 다중경로 지연이 적은 CM1에서 더 좋은 성능을 보이나 2진 시스템과 4진 시스템은 특정 $E_b/N_0$값에서 역전되는 것을 확인하였다.

Recently, Ultra-wideband (UWB) Communication systems have become a popular research topic. UWB system is characterized by the fact that the digital information represented by a subnanosecond pulses is transmitted through the air. In this paper, we consider the PPSM scheme that combine PPM and PSM. We provide the performance in AWGN and SV multipath channel which consists of $CM1\~CM4$. The optimal symbol set for M-ary system in multipath channel which shows good performance is also presented. The simulation results show that the performance in CM4 is worse than that in CMI due to long delay spread, many multipath components, 4-ary system outperforms binary system in Low$E_b/N_0$ but not in high $E_b/N_0$. We find system have the optimal symbol set in multipath channel.

키워드

참고문헌

  1. M. Z. Wm and R A Scholtz, 'Impulse radio: How it works,' IEEE Communications Letters, Vol. 2, pp. 36-38, 1998 https://doi.org/10.1109/4234.660796
  2. M. Z. Win and R A Scholtz, 'Ultra-wide band-, width time-hopping spread-spectrum impulse radio for wireless multiple-access communications,' IEEE Transactions on Communications, vol. 48,. no. 4, pp. 679-691, 2000 https://doi.org/10.1109/26.843135
  3. M. Ghavami, L. B. Michael, and R Kohno,. 'Hermite function based orthogonal pulses. for ultra wideband communications', Proceedings of the WPMC'01, pp.437-440, Aalborg, Denmark, 2001
  4. M. Ghavami, L. B. Michael, S. Haruyama, and R Kohno, 'A novel UWB pulse shape modulation system', Kluwer International Journal on Wireless Personal Communications, vol. 23, no. 1, pp. 105-120, 2002 https://doi.org/10.1023/A:1020953424161
  5. MALONG and T. C. WANG, 'Performance Analysis and simulations of UWB-PAM Communications in AWGN Channel,' IEEE International Conference on Microwave and Milimeter Wave Technology Proceedings Conf., pp. 1964-1968, 2002
  6. F. R. Mireles and R. A. Scholtz, 'Multiple access performance limits with time hopping and pulse position modulation,' Proc. IEEE Military Communication. Conf., pp.529-533, Oct. 1998 https://doi.org/10.1109/MILCOM.1998.722184
  7. J.R. Foerster, 'The effects of multipath interference on the performance of UWB systems in an indoor wireless channel,' Proc. IEEE Vehicular Tech Conf., pp.1176-1180, May 2001 https://doi.org/10.1109/VETECS.2001.944566
  8. C. J, Le Marter and G. B. Gianniakis, 'Alldigital PAM impulse radio for multiple-access through frequency selective multipath,' Proc IEEE Global Telecommunication Conf., pp.77-81, 2000 https://doi.org/10.1109/GLOCOM.2000.891694
  9. L. B. Michael, M. Ghavami, and R. Kohno, 'Effect of timing jitter on Hermite function based orthogonal pulses for ultra wideband communication,' Proceedings of the WPMC'01, pp. 441-444, Aalborg, Denmark, 2001
  10. L. B. Michael, M. Ghavami, and R. Kohno, 'Multiple pulse generator for ultra wideband communication using Hermite polynomial based orthogonal pulses,' Proceedings of the IEEE Conference on Ultra-wideband Systems and Technologies, Baltimore, Maryland, May 2002 https://doi.org/10.1109/UWBST.2002.1006316
  11. G. T. F. de Abreu, C. J, Mitchell, L. G. E. Trichard, and R. Kohno,' A note on the application of hermite pulses in UWB communications,' Proceedings of the IEEE 1st International Workshop on Ultra Wideband Systems (IWUWBS'03), Oulu, Finland, June, 2003
  12. G. T. F. de Abreu, C. J. Mitchell, and R. Kohno, 'On the design of orthogonal pulse-shape modulation for UWB systems using Hermite pulses,' Journal of Communications and Networks, vol. 5, no. 4, pp.328-343, December 2003 https://doi.org/10.1109/JCN.2003.6596615
  13. H. Zhang and T. A. Gulliver, 'Pulse Position Amplitude Modulation for Time-Hopping Multiple Access UWB Communications,' IEEE Transactions on Communications, vol. 53, Issue 8, pp. 1269-1273, August 2005 https://doi.org/10.1109/TCOMM.2005.852828
  14. W. Hu, G. Zheng, 'Orthogonal Hermite Pulses used for UWB M-ary Communication,' International Conference on Information Technology: Coding and Compution(ITCC 2005), vol. 1, pp. 97-101, 4-6 April 2005 https://doi.org/10.1109/ITCC.2005.221
  15. Access Communications. Dissertation presented to the Faculty of the Graduate School, University of Southern California, Electrical Engineering, Los Angeles, California
  16. A. A. Saleh and R. A. Valenzuela, 'A statistical model for indoor multipath propagation,' IEEE J Select. Areas Communication, vol. 5, pp. 128-137, Feb. 1987 https://doi.org/10.1109/JSAC.1987.1146527
  17. Jeffrey R. Foerster and Andreas F. Molisch, 'A Channel Model for Ultra-wideband Indoor Communication,' Channel Modeling Sub-committee Report Final, November, 2002
  18. C. J. Mitchell, G. T. Freitas de Abreu, R. Kohno, 'Combined Pulse Shape and Pulse Position Modulation for High Data Rate Transmissions in Ultra-Wideband Communications', International Journal of Wireless Information Networks, vol. 10, no. 4, pp. 167-178, October 2003 https://doi.org/10.1023/B:IJWI.0000022048.32871.cf