Distribution Pattern of cpSSR Variants in Korean Populations of Japanese Red Pine

국내 소나무 집단에 있어서 cpSSR 표지자 변이체의 분포양상

  • Hong, Yong-Pyo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kwon, Hae-Yun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Yong-Yul (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 홍용표 (국립산림과학원, 산림유전자원부) ;
  • 권해연 (국립산림과학원, 산림유전자원부) ;
  • 김용율 (국립산림과학원, 산림유전자원부)
  • Received : 2006.05.09
  • Accepted : 2006.07.10
  • Published : 2006.12.31

Abstract

A total of 167 peculiar haplotypes confirmed from 28 cpSR variants that were observed in 19 populations of Japanese red pine in Korea through cpSSR marker analysis. Thirteen individuals that showed identical haplotype dispersed evenly in 10 populations, and the average number of effective haplotype within population was 13.37. Estimate of genetic diversity (He) was 0.987 on the basis of cpSSR haplotype variants that was equivalent to or higher than the estimates reported in other studies on some forest tree species. Estimation of genetic diversity (S.I.) on the basis of cpSSR variants composing each haplotype revealed the highest estimate of 1.109 for the population of Gangwon-Yeongwol and the lowest estimate of 0.411 for the population of Gyeongbuk Mungyeong with the average of 0.887. Most of observed cpSSR variants appeared to exist commonly in 19 populations (97.62%), and genetic differentiation of cpSSR variants among populations was turned out to be weak (${\Phi}_{ST}=0.024$). Relatively fast rate of mutation of cpSSR marker might be a major cause for such weak population differentiation. There was no identical haplotype shared between 39 population pairs of 173 pair-wise population pairs. Estimation of genetic distance among 19 populations on the basis of population pairs was also impossible, that might be resulted from restricted migration among 19 populations. Considering the observed distribution patterns of cpSSR variants in addition to the previous studies on I-SSR variants, informations on the present geographic location and genetic status of populations should be considered together for effective sustainable management of the genetic resources of Japanese red pine in Korea.

국내 소나무 19개 집단을 대상으로 cpSSR 표지자 분석을 통해서 관찰된 28개 변이체로부터 총 167개의 독특한 haplotype이 확인되었고, 동일한 haplotype을 보인 13개체가 10집단에 고르게 분포하였으며, 각 집단에서 관찰된 유효 haplotype의 수는 평균 13.37개로 나타났다. cpSSR haplotype의 집단내 다양도(He)는 0.987로 계산되어 기존의 임목을 대상으로 한 연구에서 보고된 수치와 유사하거나 약간 높은 수치를 보였다. 각 haplotype을 구성하고 있는 cpSSR 변이체를 대상으로 각 집단에서의 다양성(S.I.)을 계산한 결과 강원도 영월집단이 1.109로 계산되어 가장 높은 수치를 보였으며, 경북 문경집단이 0.411로 가장 낮은 수치를 보였다(평균 0.887), 관찰된 cpSSR 변이체들의 대부분이 19개 집단에 공통적으로 존재하는 것으로 나타났으며(97.62%), 집단간에 cpSSR 변이체 분화는 미약한 것으로 나타났는데(${\Phi}_{ST}=0.024$) cpSSR 표지자의 높은 돌연변이 발생빈도가 주요 원인인 것으로 추정된다. 반면에 비교 가능한 173개 집단 쌍 간에 동일한 haplotype이 전혀 존재하지 않는 집단 쌍이 39쌍으로 나타나 집단간의 유전적 유연관계에 대한 직접적인 비교가 불가능했으며, 따라서 분석된 19개 집단간에 유전적 교류가 자유롭게 일어나지 않는 것으로 나타났다. cpSSR 표지자 변이체의 분포양상과 기존의 I-SSR 표지자 변이체의 분포양상을 비교 고찰해 볼 때 국내 소나무 유전자원의 효율적인 관리를 위해서는 분석된 소나무 집단의 현재 위치 정보와 유전정보가 함께 고려되어야할 것으로 생각된다.

Keywords

References

  1. 김영중, 송정호, 조경진, 김용울, 구영본. 2002. 準人工交 配에 의한 리기다X테다 소나무 잡종종자 大量生産과 雌花芽의 生長特性. 한국육종학회지 34(3): 228-235
  2. 노은운, 이재순, 최영임, 한무석, 한상억, 이효신, 이용섭. 2005. 잣나무의 엽록체 유전체. 국립산림과학원 연구자료 251호. pp. 74-139
  3. Anzidei, M., A. Madaghiele, C. Sperisen, B. Ziegenhagen, and Go. Vendramin. 1999. Chloroplast microsatellites for analysis of the geographic distribution of diversity in conifer species. In: Gillet, E.M. (ed.). Which DNA Marker for Which Purpose? Final Compendium of the Research Project Development, optimization and validation of molecular tools for assessment of biodiversity in forest trees in the European Union DGXII Biotechnology FW IV Research Programme Molecular Tools for Biodiversity. URL http://webdoc.sub.gwdg.de/ebook/y/1999/ whichmarker/ index.htm
  4. Birky, C.W.Jr., F. Paul, and M. Takeo. 1989. Organelle gene diversity under migration, mutation, and drift: Equilibrium expectations, attroach to equilibrium, effects of heteroplasmic cells, and comparison to nucler genes. Genetics 121: 613-627
  5. Black, W. C, IV. 1996. RAPDDIST 1.0. Department of Microbiology, Colorado State University, Fort Collins, CO. USA
  6. Excoffier, L., P. Smouse, and J. Quattro. 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 : 479-491
  7. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics. University of Washington. Seattle, WA. USA
  8. Hong, Y.-P., H.-Y. Kwon, K.-S. Kim, K.-N. Hong, and Y.Y. Kim. 2004. Discordance between geographical distribution and genetic relationship among populations of Japanese red pine in Korea revealed by analysis of I-SSR markers. Silvae Genetica 53(3): 89-92
  9. Hong, Y-P., H.-Y. Kwon, and I.-S. Kim. 2006. I-SSR markers revealed inconsistent phylogeographic patterns among populations of Japanese red pine in Korea. Silvae Genetica (인쇄중)
  10. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York
  11. Parducci, L., A.E. Schmidts, A. Madaghi, M. Anzidei, and Go. Vendramin. 2001. Genetic variation at chloroplast microsatellite (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species Theoretical Applies Genetics 102: 733-740
  12. Provan, J., N. Soranzo, N.J. Wilson, J.W.McNicol, G.I. Forrest, J. Cottrell, and W. Powell. 1998. Gene pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats. Proceedings of the Royal Society of London. Series B. 265: 1697-1705
  13. Provan, J., N. Soranzo, N.J. Wilson, D.B. Goldstein, and W. Powell. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153: 943-947
  14. Richardson, B.A., S.J. Brunsfeld, and N.B. Klopfenstein. 2002. DNA from birds-dispersed seeds and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of white bark pine (Pinus albicaulis). Molecular Ecology 11: 215-227 https://doi.org/10.1046/j.1365-294X.2002.01435.x
  15. Ribeiro, M.M., C. Plemion R. Petit, G.G. Vendramin, and A.E. Schmidts. 2001. Variation in chloroplast singlesequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theoretical Applies Genetics 102: 97-103 https://doi.org/10.1007/s001220051623
  16. Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  17. Schneider, S., D. Roessli and L. Excoffier. 2000. Arlequin V2.000. A software for population genetics data analysis. Dept. of Anthropology and Ecology, University of Geneva, Geneva, Switzerland
  18. Slatkin, M. 1987. Gene flow and the Geographic structure of natural populations. Science 236: 787-792 https://doi.org/10.1126/science.3576198
  19. Tautz, D. 1993. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In: Pena S.D.J., R. Chakraborty, J.T. Epplen, and A.J. Jeffreys (eds.). DNA Fingerprinting: State of the Science. Birkhauser Verlag, Basel, Switzerland, pp. 21-28
  20. Vendramin G.G., L. Lelli, P. Rossi, and M. Morgante. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol. Ecol. 5: 111-114
  21. Wakasugi T., J. Tsudzuki, S. Ito, M. Shibata, and M. Sugiura. 1994. A physical map and clone bank of the black pine (Pinus thunbergii) chloroplast genome. Plant Mol. BioI. Rep. 12: 227-241 https://doi.org/10.1007/BF02668746
  22. Yeh, F.C., R.C. Yang and T. Boyle. 1999. POPGENE v 1.31. Microsoft window-based freeware for population genetic analysis. Dept. of Renewable Resources. Univ. of Chicago Press, Chicago, USA