Effect of Processing Factors on the Properties of Melt-blown PP/Ba-ferrite Composite Fabrics

Melt-blown 방사에 의한 PP/Ba-ferrite 복합 부직포 제조시의 공정인자가 부직포의 특성에 미치는 영향

  • Han, Jong-Hun (Composite Materials Center, Korea Institute of Ceramic Eng & Tech.) ;
  • Lee, Dong-Jin (Composite Materials Center, Korea Institute of Ceramic Eng & Tech.) ;
  • Lim, Hyung Mi (Composite Materials Center, Korea Institute of Ceramic Eng & Tech.) ;
  • Lee, Seung-Ho (Composite Materials Center, Korea Institute of Ceramic Eng & Tech.) ;
  • Oh, Sung Geoun (Department of Chemical Engineering, Hanyang University)
  • 한종헌 (요업기술원 복합재료센터) ;
  • 이동진 (요업기술원 복합재료센터) ;
  • 임형미 (요업기술원 복합재료센터) ;
  • 이승호 (요업기술원 복합재료센터) ;
  • 오성근 (한양대학교 화학공학과)
  • Received : 2005.12.14
  • Accepted : 2006.04.17
  • Published : 2006.06.10

Abstract

We have prepared PP/Ba-ferrite composite fabrics by a melt-blown spinning method and investigated the relationship between the properties of PP/Ba-ferrite composite fabrics and melt-blown processing factors. A PP composite containing Ba-ferrite as a magnetic particulate filler was prepared in the form of pellet from PP resin and Ba-ferrite powder by melt compounding using a single extruder. Screw turning force (rpm), DCD (die-to-collector distance), and Ba-ferrite content were changed. We measured diameters of fiber, mechanical, thermal, and magnetic properties for the composited PP fabrics. The elongation was increased and a fiber diameter and tensile strength were decreased as the spinning distance increased or screw turning force decreased. The crystallinity was increased with increasing spinning distance according to XRD. It was assumed that the orientation of crystalline domain in the neat PP without ferrite was increased by drawing in mechanical direction, however, the orientation in the PP composite was decreased according to XRD analysis. We measured a magnetic property of PP nonwoven fabric containing Ba-ferrite powder. A coercive force, maximum magnetization, and residual magnetization are reduced with the spinning distance. According to the result of TGA measurement, the heat resistance was increased with the Ba-ferrite powder content and with decreasing the spinning distance.

Melt-blown 방사법으로 Ba-ferrite 포함하는 PP 복합수지를 방사하여 부직포 섬유를 제조하는 공정에서 방사공정인자와 부직포 특성과의 상관관계를 조사하였다. PP 수지와 Ba-ferrite 분말을 혼합한 후 단축 압출 성형기를 이용하여 펠렛 형태로 제조하고 Melt-blown 섬유 방사기를 이용하여 screw turning force (rpm)와 DCD (die-to-collector distance)를 변화시켜 Ba-ferrite 분말이 부직포 섬유의 기계적, 열적, 결정학적 및 자성 특성에 미치는 영향을 조사하였다. SEM 관찰을 통하여 방사 거리가 증가할수록 혹은 screw turning force가 감소할수록 부직포 섬유의 연신율이 증가하고, 섬유의 직경 및 인장강도가 감소하는 것을 알 수 있었고, XRD 측정 결과로부터 방사거리의 증가는 섬유의 결정성을 높이는 것으로 관찰되었다. 복합 부직포에서는 입자가 고분자와 분리되어 고분자와 입자간의 결합력이 떨어져 순수한 PP대비 인장강도가 감소하였다. Ba-ferrite 분말에 의한 부직포의 자성적 성질을 보면 방사거리에 따라 보자력, 최대 자화, 잔류 자화 값은 감소하였다. TGA 측정을 통한 부직포 섬유의 내열성 시험 결과는 방사거리의 감소에 따라 내열성이 증가하였으며 난연성은 Ba-ferrite 분말의 함량 증가에 따라 증가하였다.

Keywords

References

  1. G. E Padawer and N. Beecher, Polym. Eng. Sci., 10, 130 (1970) https://doi.org/10.1002/pen.760100211
  2. P. B. Messerssmith and S. I. Stupp, J. Mater. Res., 7, 2599 (1992) https://doi.org/10.1557/JMR.1992.2599
  3. A. Okada and A. Usuki, Mater. Sci. Eng., C3, 109 (1995)
  4. E. P Giannelis, Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  5. F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Yu. L. Raikher, V. I. Stepanov and E. Dubois, J. Magnetism and Magnetic Materials, 186, 175 (1998) https://doi.org/10.1016/S0304-8853(98)00080-8
  6. B. M. Novak Adv. Mater., 5, 422 (1993) https://doi.org/10.1002/adma.19930050603
  7. Y. K. Kim, D. H. Riu, S. R. Kim, and B. I. Kim, Materials Letters, 54, 229 (2002) https://doi.org/10.1016/S0167-577X(01)00568-7
  8. U. S. Patent 4,100,324 (1978)
  9. Japan Patent No. 55-142757
  10. U. S. Patent, 3,978,185 (1976)
  11. K. J. Choi, J. E. Spruiell, J. F. Fellers, and L. C. Wadsworth, Polym. Eng. Sci., 21, 81 (1988)
  12. Y. C. Lee and L. C. Wadsworth, Polym. Eng. Sci., 30, 1413 (1990) https://doi.org/10.1002/pen.760302202
  13. Y. C. Lee and L. C. Wadsworth, Polymer J., 33, 1200 (1992) https://doi.org/10.1016/0032-3861(92)90764-N
  14. M. W. Milligan, R. R. Buntin, and L. C. Wadsworth, J. Appl. Polym. Sci., 44, 279 (1992) https://doi.org/10.1002/app.1992.070440212
  15. R. L. Shambaugh, AIChE. J., 36, 175 (1990) https://doi.org/10.1002/aic.690360203