On-Line Measurement of Biochemical Oxygen Demand of livestock Wastewater by Multi-Biosensor System

Multi-Biosensor를 이용한 축산폐수의 생물화학적 산소요구량 실시간 측정방법 연구

  • Kim, Jin-Kyeung (Department of Biochemical Engineering, College of Engineering, University of Suwon) ;
  • Kim, Tai-Jin (Department of Biochemical Engineering, College of Engineering, University of Suwon)
  • 김진경 (수원대학교 공과대학 화공생명공학과) ;
  • 김태진 (수원대학교 공과대학 화공생명공학과)
  • Published : 2006.08.30

Abstract

The present study was intended to examine a basic scheme to determine the biochemical oxygen demand(BOD) of livestock wastewater by means of six individual dissolved oxygen(DO) sensors and its multi-measurable meter. Maximal point of the first order time derivative of the DO difference between DO distribution of sterilized livestock wastewater and that of non-sterilized livestock wastewater, was considered as the oxygen uptake rate(OUR) of microorganisms in livestock wastewater, as determined to be 0.00074 mg $O_2/{\ell}{\cdot}sec$. The present study showed that there was a fair linear relationship(97.72%) between maximal OUR and BOD values of livestock wastewater, the latter being determined by classical Winkler azide method. It was thus concluded that the present multi-biosensor system might be applicable to an on-line system for measurement of BOD of livestock wastewater.

용존산소 센서 및 시스템에서 손실되는 산소량을 보정하기 위해 멸균처리 기법을 도입하였다. 멸균처리 시료의 DO 거동과 비멸균처리 시료의 DO 거동차(${\Delta}$DO)는 시스템의 영향과 무관하게 폐수 자체의 순수한 미생물만이 소모하는 산소변화량을 구하였다. 용존산소 센서로 축산폐수의 시간에 따른 DO거동(-d${\Delta}$DO/dt)을 측정하여 구한 폐수 자체의 미생물에 의한 산소소모속도는 0.00074mg $O_2/{\ell}{\cdot}sec$이었다. 축산폐수의 원액을 희석하여 다양한 BOD값을 갖도록 시료를 제조한 후 DO meter로 측정하여 구한 DO 변화량은 동일한 시료를 5일 BOD 측정방법인 Winkler Azide화 변법으로 구한 BOD값과 선형구간($30{\sim}60$분)에서 97.72%의 높은 상관 선형성을 보였다. 따라서 본 연구의 multi-biosensor 시스템은 축산폐수의 BOD를 짧은 시간에 정확하게 측정할 수 있는 가능성을 제시하였다.

Keywords

References

  1. American Public Health Association, American Water Works Association, Water Environment Federation (1992), Standard Methods for Examination of Water and Wastewater, 18th ed., Washington, DC., 5210
  2. Ihn, G. S., Park, K. H., Pek, U. H., and M. J. Son (1992), Microbial BOD Sensor Using Hansenula anomala, Bull. Korean Chem. Soc. 13(2), 145-148
  3. Janata, J. (1990), Principles of Chemical Sensors, Plenum Press, 83
  4. Japanese Industrial Standard Committe (1986), Testing Methods for Industrial Waste Water, JIS K 0102, 47, Tokyo, Japan
  5. Karube, I., Matsunaga, T., Mitsuda, S., and S. Suzuki (1977), Biotechnology Bioengineering 19, 1935
  6. Aiba, S., Humphrey, A. E., and N. F. Millis (1973), Biochemical Engineering 2nd ed., Academic press, 332-345
  7. Taguchi, H. and A. E. Humphrey (1966), Dynamic Measurement of the Volumetric Oxygen Transfer Coefficient in Fermentation Systems, Journal of Fermentation Technology, Japan 44, 881
  8. Kim, T. J., Seo, J. W., Kim, J. K., Kim, J. C., and T. H. Jung (2001), Initial Study on Behavior of Microorganisms in Livestock Wastewater, Korean J. Biotechnol. Bioeng. 16(4), 430-434
  9. Kim, T. J., Jurng, T. H., Chung, U. H., and S. I. Hong (2001), Simultaneous Determination of Oxygen Transport Characteristics of Six Membranes by Hexagonal Dissolved Oxygen Sensor System, Sensors and Actuators B 72, 11-20 https://doi.org/10.1016/S0925-4005(00)00628-6