Isolation and Characterization of Penicillium crustosum, a Patulin Producing Fungus, from Apples

  • Yun, Hye-Jeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Chung, Jin-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jo, Cheo-Run (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Park, Jong-Chun (College of Medicine, Seonam University) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Dong-Ho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • Published : 2006.12.31

Abstract

Patulin is a food mycotoxin which induces genotoxicity and acute intestinal disease in infants. Patulin mainly originates from fruit putrefactive moulds, especially in apples, which necessitates the maintenance of strong safety standards against patulin for fresh and processed apples. To investigate the patulin producing moulds in Korean apples, 16 morphological types of fungi were isolated from Korean apples and a patulin producing fungus was identified based on a sequence analysis of the region of internal transcribed spacers (ITS5-5.8S-ITS4 region, 505 base pair) and the 26 rRNA D1/D2 region (527 base pair). Morphological analyses were also performed. The isolated patulin producing fungus was found to a representative species of Penicillium crustosum. The maximal patulin production ability of the isolated fungus (P. crustosum) and the patulin producing standard strain (P. griseofulvum, ATCC 46037) in an SY broth medium were 0.32 and 2.46 mg/L, respectively.

Keywords

References

  1. Gokmen V, Acar, J. Simultaneous determination of 5-hydroxymethylfurfural and patulin in apple juice by reversed-phase liquid chromatography. J. Chromatogr. A 847: 69-74 (1999) https://doi.org/10.1016/S0021-9673(99)00133-8
  2. Shephard GS, Leggott NL. Chromatographic determination of the mycotoxin patulin in fruit and fruit juices. J. Chromatogr. A 882: 17-22 (2000) https://doi.org/10.1016/S0021-9673(99)01341-2
  3. Varga J, Rigo K, Toth B, Teren J, Kozakiewicz Z. Evolutionary relationships among Aspergillus species producing economically important mycotoxms. Food Technol, Biotech. 41: 29-36 (2003)
  4. Boonzaaijer G, Bobeldijk I, Osenbruggen WA. Analysis of patulin in Dutch food, an evaluation of a SPE based method. Food Control 16: 587-591 (2005) https://doi.org/10.1016/j.foodcont.2004.06.020
  5. Chain E, Florey HW, Jennings MA. An antibacterial substance produced by Penicillium claviforme. J. Exp. Pathol. 29: 202-205 (1942)
  6. Seglar B. Cse of studies that implicate silage mycotoxins as the case of dairy herd problems. pp. 242-254. In: Silage: Field to Feedbunk, NRAES-99, Northeast Regional Agricultural Engineering Service, Ithace, NY, USA (1997)
  7. Lai CL, Fuh YM, Shih DYC. Detection of mycotoxin patulin in apple juice. J. Food Drug Anal. 8: 85-96 (2000)
  8. Llewellyn GC, McCay JA, Brown RD, Musgrove DL, Butterworth LF, Munson AE, White KL Jr. Immunological evaluation of the mycotoxin patulin in female B6C3F(1) mice. Food Chem. Toxicol. 36: 1107-1115 (1998) https://doi.org/10.1016/S0278-6915(98)00084-2
  9. Drusch S, Kopka S, Kaeding J. Stability of patulin in a juice-like aqueous model system in the presence of ascorbic acid. Food Chem. 100: 192-197 (2006) https://doi.org/10.1016/j.foodchem.2005.09.043
  10. Sweeney MJ, Dobson AD. Mycotoxin production by Aspergillus, Fusarium, and Penicillium species. Int. J. Food Microbiol. 43: 141-158 (1998) https://doi.org/10.1016/S0168-1605(98)00112-3
  11. Sewrarn V, Nair JJ, Leggott, NL, Shephard GS. Determination of patulin in apple juice by high-performance liquid chromatographyatmosphenc pressure chemical ionization mass spectrometry. J. Chromatogr. A 879: 365-374 (2000)
  12. Ritieni A. Patulin in Italian commercial apple products. J. Agr. Food Chem. 51: 6086-6090 (2003) https://doi.org/10.1021/jf034523c
  13. Mahfoud R, Maresca M, Garmy N, Fantini J. The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol. Appl. Pharm. 181: 209-218 (2002) https://doi.org/10.1006/taap.2002.9417
  14. Rychlik: M, Kircher F, Schusdziarra V, Lippi F. Absorption of the mycotoxin patulin from the rat stomach. Food Chem. Toxicol. 42: 729- 735 (2004) https://doi.org/10.1016/j.fct.2003.12.015
  15. WHO. World Health Organization Evaluation of certain food additives and contaminants. pp. 36-38. In: Report of the 44th Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives, Technical Report Series 859. Geneva, Switzerland (1995)
  16. Bullerman LB. Significance of mycotoxins to food safety and human health. J. Food Protect. 42: 65-86 (1979) https://doi.org/10.4315/0362-028X-42.1.65
  17. Davis ND. Sterigmatocystin and other mycotoxins produced by Aspergillus parasiticus. J. Food Protect. 44: 711-714 (1981) https://doi.org/10.4315/0362-028X-44.9.711
  18. Wilson DM, King JK. Production of aflatoxin $B_1, B_2, G_1, and G_2$ in pure and mixed cultures of Aspergillus parasitic us and Aspergillus flavus. Food Addit. Contam. 12: 521-525 (1987)
  19. Kurtzman CD, Hom BW, Hesesltine CWo Aspergillus nomius, a new aflatoxin producing species related to Aspergillus flavus and Aspergillus tamari. J. Microbiol. 53: 147-158 (1987) https://doi.org/10.1007/s12275-015-4616-4
  20. Goto T, Wicklow DT, Ito Y. Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl. Environ. Microbiol. 62: 4036-4038 (1996)
  21. Lee EJ, Lee HJ, Kin, JK. Antimutagenic effects on aflatoxin B1 of soybean pastes fermented by Bacillus strains. Food Sci. Biotechnol. 14: 878-880 (2005)
  22. Hwang KT, Lee W, Kim GY, Lee SK, Lee J, Jun W. The binding of aflatoxin B1 modulates the adhension properties of Lactobacillus casei KCTC 3260 to a HT29 colon cancer cell line. Food Sci. Biotechnol. 14: 866-870 (2005)
  23. Ukai T, Yamamoto Y, Yamamoto T. Studies on the poisonous substance from a strain of Penicillium. II. Culture method of HoriYamamoto strain and chemical structure of its poisonous substance. J. Pharmacol. Sci. 74: 450-454 (1954)
  24. Sommer NF, Buchnan JR, Fortlage RJ. Production of patulin by Penicillium expansum. Appl. Microbiol. 28: 589-593 (1974)
  25. Alberto G, Martins ML. Rapid thin layer chromatographic determination of patulin, citrinin, and aflatoxin in apples and pears and their juices and jams. J. Assoc. Off. Anal. Chem. 66: 85-91 (1983)
  26. Majid CA, Hamid RM, Maryam A, Mahmoud GK, Mashid A. Incidence of patulin contamination in apple juice produced in Iran. Food Control 16: 165-167 (2005) https://doi.org/10.1016/j.foodcont.2004.01.006
  27. Gokmen V, Acar J. Incidence of patulin in apple juice concentrates produced in Turkey. J. Chromatogr. A 815: 99-102 (1998) https://doi.org/10.1016/S0021-9673(97)01280-6
  28. Norma LL, Gordon SS. Patulin in South Africa commercial apple products. Food Control 12: 73-76 (2001) https://doi.org/10.1016/S0956-7135(00)00023-2
  29. Lee JH, Kim YC, Kim MY, Chung H8, Chung SK. Antioxidative activity and related compounds of apples pomace. Korean J. Food Sci. Technol. 32: 908-913 (2000)
  30. Thomas R, Ida S, Arne F. The presence of Penicillium and Penicillium mycotoxins in food wastes. Int. J. Food Microbiol. 90: 181-188 (2004) https://doi.org/10.1016/S0168-1605(03)00291-5
  31. AOAC. Official Methods of Analysis of AOAC Intl. 16th ed. Method 968.22F. Association of Official Analytical Communities, Arlington, VA, USA (1995)
  32. Baleiras-Couto MM, Reizinho, RG, Duarte FL. Partial 268 rDNA restriction analysis as a tool to characterize non-Saccharomyces yeast present during red wine fermentations. Int. J. Food Microbiol. 102: 49-56 (2005) https://doi.org/10.1016/j.ijfoodmicro.2005.01.005
  33. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeast from analysis of nuclear large submit (268) ribosomal DNA partial sequences. Anton. Leeuw, Int. S. G. 73: 331-371 (1998) https://doi.org/10.1023/A:1001761008817
  34. Boekhout T, Kurtzman CP, O'Donnell K, Smith MT. Phylogeny of the yeast genera Hanseniaspora (Anamorph Kloeckera), Dekkera (Anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int. J. Syst. Bacteriol. 44: 781-786 (1994) https://doi.org/10.1099/00207713-44-4-781
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 (1994) https://doi.org/10.1093/nar/22.22.4673
  36. Jukes TH, Cantor CR. Evolution of protein molecules. pp. 21-132. In: Mammalian Protein Metabolism. Munro HN (ed). Academic Press. New York, NY, USA (1969)
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425 (1987)
  38. Samson RA, Pitt IT. Advances in Penicillium and Aspergillus systematics. Plenum Press, New Yorkm NY, USA. pp. 383-396 (1985)
  39. Pitt IT. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London, UK. pp. 634-635 (1979)
  40. Pitt JI. A Laboratory Guids to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, North Ryde, New South Wales, Australia. pp. 182-183 (1985)
  41. Robert AS, Ellen SH, Jens CF, Ole F. Food Borne Fungi. Centraalbureau voor Schimmelcultures, Netherlands. pp. 322-323 (1995)
  42. Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of Fungi. 2nd ed. Centraalbureau voor Schimrnelcultures, Netherlands. p. 1126 (1999)
  43. Erdogan A, Gurses M, Sert S. Isolation of moulds capable of producing mycotoxins from blue mouldy Tulum cheeses produced in Turkey. Int. J. Food Microbiol. 85: 83-85 (2003) https://doi.org/10.1016/S0168-1605(02)00485-3