Determination of Arsenic in Water by ICP-DRC/MS

ICP-DRC/MS를 이용한 수중의 비소 측정

  • Jeong, Gwan-Jo (Waterworks Research Institute, Seoul Metropolitan Government) ;
  • Kim, Dok-Chan (Department of Chemical Engineering, University of Seoul) ;
  • Park, Hyeon (Waterworks Research Institute, Seoul Metropolitan Government)
  • 정관조 (서울특별시 상수도연구소) ;
  • 김덕찬 (서울시립대학교 화학공학과) ;
  • 박현 (서울특별시 상수도연구소)
  • Published : 2006.06.30

Abstract

In this investigation, an ICP-DRC/MS method to measure arsenic with ultra-trace concentration without any interference by the compounds such as $^{40}Ar^{35}Cl^+\;and\;^{40}Ca^{35}Cl^+$, which disturb the precise measurement of arsonic was described. Thus, the oxgen was introduced into the dynamic reaction cell as reaction gas and reacted with arsenic ion created in plasma gas, $AsO^+$ was formed and detected with m/z of 91 by ICP-MS. It resulted in better detection limit than the old method with m/z of 75($As^+$). The optimum condition for oxygen supply as the reaction gas was 0.5 mL/min. The analytical features of the method are as follows: detection limit of $0.02{\mu}g/L$, precision(RSD) of 3.4%, and recovery of 96%. Arsenic in the water samples from the tributary streams to the Han River and the main stream of Paldang were analyzed with this method to identify the characteristics in its distribution. The concentration of As ranged from 0.53 to $1.26{\mu}g/L$. We could measure As with very low concentration, less than $1.0{\mu}g/L$, with excellent reproducibility. The method developed is expected to be applied to analyze As of the samples from sea water, food, and domestic and industrial waste water which have high concentration of Cl and/or Ca.

본 연구에서는 ICP-DRC/MS를 이용하여 비소(arsenic) 분석의 주요 방해물질인 $^{40}Ar^{35}Cl^+$$^{40}Ca^{35}Cl^+$에 의한 간섭의 영향 없이 극미량의 비소를 간편하고 신속하게 측정할 수 있는 방법을 제시하였다. 즉, 반응기체로 산소($O_2$)를 dynamic reaction cell에 도입하여 플라즈마 기체 내부에서 생성된 비소이온($As^+$)과 반응시켜 $AsO^+$를 생성시킨 후 m/z=91을 검출함으로써 기존의 m/z=75($As^+$) 검출방법에 비해 우수한 재현성과 검출한계를 얻을 수 있었다. 반응기체($O_2$)의 양은 0.5 mL/min 일 때 최적조건으로 나타났으며, 검출한계는 $0.02{\mu}g/L$, 정확도(RSD)는 3.4%, 회수율은 96%로 나타났다. 이 분석방법으로 서울시 한강 팔당 본류 유입 지류천에서 채취된 시료 중의 비소를 분석한 결과, $0.53{\sim}1.26{\mu}g/L$의 농도로 나타났으며 우수한 재현성을 나타냈다. 또한 이 방법은 다량의 염소(Cl)나 칼슘(Ca)을 함유한 해수, 식품, 하수 및 폐수 중의 비소 분석에도 유용하게 적용될 수 있으리라 기대된다.

Keywords

References

  1. Richardson, S. D. and Ternes, T. A., 'Emerging contaminants and current Issues,' Anal. Chem., 77, 3807-3838(2005) https://doi.org/10.1021/ac058022x
  2. Suner, M. A., Devesa, V., Rivas, I., Velez, D., and Montoro, R., 'Speciation of cationic arsenic species in seafood by coupling liquid chromatography with hydride generation atomic fluoresecence detection,' J. Anal. At. Spectrom., 15, 1501-1507(2000) https://doi.org/10.1039/b006327o
  3. Smichowski, P., Marrero, J., Ledesma, A., Polla, G., and Batistoni, D. A., 'Speciation of As(III) and As(V) in aqueous solution using baker's yeast and hydride generation inductively coupled plasma atomic emission spectrometric determination,' J. Anal. At. Spectrom, 15, 1493-1497(2000) https://doi.org/10.1039/b004697n
  4. Wei, X., Brockhoff-Schwegel, C. A., and Creed, T., 'A comparision of urinary arsenic speciation via direct nebuilization and on-line hpoto-oxidation-hydride generation with IC seperation and ICP-MS detection,' J. Anal. At. Spectrom., 16, 12-19(2001) https://doi.org/10.1039/b004257i
  5. McSheehy, S. and Szpunar, J., 'Speciation of arsenic in edible algae by bi-dimensional size-exclusion anion exchange HPLC with dual ICP-MS and electrospray MS/MS detection,' J. Anal. At. Spectrom., 15, 79-87(79) https://doi.org/10.1039/a906890b
  6. Bohari, Y., Astruc, A., Astruc, M., and Cloud, J., 'Improvement of hydride generation for the speciation of arsenic in natural freshwater samples by HPLC-HG-AFS,' J. Anal. At. Spectrom., 16, 774-778(2001) https://doi.org/10.1039/b101591p
  7. Featherstone, A. M., Butler, E. C. V., O'Grady, B. V., and Michel, P., 'Determination of arsenic species in seawater by hydride generation atomic fluorescense spectroscopy,' J. Anal. At. Spectrom., 19, 1355-1360(1998)
  8. Wangkaen, S. and Perganris, S. A., 'High-speed sepertion of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry,' J. Anal. At. Spectrom., 15, 627-633(2000) https://doi.org/10.1039/b001810o
  9. Munoz, O., Velez, D., Montoro, R., Arroyo, A., and Zamorano, M., 'Determination of inorganic arsenic [As(III) +As(V)] in water samples by microwave assisted distillation and hydride generation atomic absorption spectrometry,' J. Anal. At. Spectrom., 15, 711-714(2000) https://doi.org/10.1039/b001340o
  10. Cosnier, A., Corre, N. L., and Olivero, C., 'ICP-AES Application report, Jobin Yvon,' 6-10(2006)
  11. Heitkemper, D. T., Vela, N. P., Stewart, K. R., and Westphal, C. S., 'Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry,' J. Anal. At. Spectrom., 16, 299-306(2001) https://doi.org/10.1039/b007241i
  12. Falk, K. and Emons, H., 'Speciation of arsenic compounds by ion-exchange HPLC-ICP-MS with different nebulizers,' J. Anal. At. Spectrom., 15, 643-649(2000) https://doi.org/10.1039/b001024n
  13. Park, K. S., Kim, J. S., Lee, H. M., Pyo, H. S., Kim, S. T., and Lee, K. B., 'Speciation of Six Arsenic Compounds in Korean Seafood Samples by HPLC-ICP-MS,' Key Engineering Materials, 277-279, 431-437(2005)
  14. Hattendorf, D. and Gunther, D., 'Characteristics and capabilities of an ICP-MS with a dynamic reaction cell for dry aerosols and laser ablation,' J. Anal. At. Spectrom., 15, 1125-1131(2000) https://doi.org/10.1039/b001677m
  15. Simpson, L. A., Thomsen, M., Alloway, J. B., and Parker, A., 'A dynamic reaction cell(DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry(ICP-MS) analysis of the noble metals,' J. Anal. At. Spectrom., 16, 1375-1380(2001) https://doi.org/10.1039/b107818f