DOI QR코드

DOI QR Code

Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba

  • Gao, Shi (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Lin, Juan (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Liu, Xuefen (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Deng, Zhongxiang (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Li, Yingjun (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Sun, Xiaofen (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Tang, Kexuan (State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University)
  • Received : 2006.02.10
  • Accepted : 2006.04.10
  • Published : 2006.09.30

Abstract

2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of $\beta$-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.

Keywords

References

  1. Bick, J. A. and Lange, B. M. (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415, 146-154. https://doi.org/10.1016/S0003-9861(03)00233-9
  2. Bloch, K. (1992) Sterol molecule - structure, biosynthesis, and function. Steroids 57, 378-383. https://doi.org/10.1016/0039-128X(92)90081-J
  3. Bouvier, F., d'Harlingue, A., Suire, C., Backhaus, R. A. and Camara, B. (1998) Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 117, 1423-1431. https://doi.org/10.1104/pp.117.4.1423
  4. Carrier, D. J., van Beek, T. A., van der Heijden, R. and Verpoorte, R. (1998) Distribution of ginkgolides and terpenoid biosynthetic activity in Ginkgo biloba. Phytochemistry 48, 89-92. https://doi.org/10.1016/S0031-9422(97)00450-0
  5. Chappell, J. (1995) Biochemistry and molecular-biology of the isoprenoid biosynthetic-pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 521-547. https://doi.org/10.1146/annurev.pp.46.060195.002513
  6. Cunningham, F. X., Sun, Z. R., Chamovitz, D., Hirschberg, J. and Gantt, E. (1994) Molecular structure and enzymatic function of lycopene cyclase from the Cyanobacterium synechococcus Sp Strain Pcc7942. Plant Cell 6, 1107-1121. https://doi.org/10.1105/tpc.6.8.1107
  7. Cunningham, F. X., Pogson, B., Sun, Z. R., McDonald, K. A., DellaPenna, D. and Gantt, E. (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8, 1613-1626. https://doi.org/10.1105/tpc.8.9.1613
  8. Cunningham, F. X. and Gantt, E. (2000) Identification of multigene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli. Plant Cell Physiol. 41, 119-123. https://doi.org/10.1093/pcp/41.1.119
  9. Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox, A. L., Graham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay, M., Huber, R., Feldman, R. A., Short, J. M., Olsen, G. J. and Swanson, R. V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353-358. https://doi.org/10.1038/32831
  10. Eisenreich, W., Rohdich, F. and Bacher, A. (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6, 78-84. https://doi.org/10.1016/S1360-1385(00)01812-4
  11. Han, Y. S., Roytrakul, S., Verberne, M. C., van der Heijden, R., Linthorst, H. J. M. and Verpoorte, R. (2003) Cloning of a cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase from Morinda citrifolia and analysis of its expression in relation to anthraquinone accumulation. Plant Sci. 164, 911-917. https://doi.org/10.1016/S0168-9452(02)00362-X
  12. Hosford, D. J., Domingo, M. T., Chabrier, P. E. and Braquet, P. (1990) Ginkgolides and platelet-activating factor binding sites. Methods Enzymol. 187, 433-446. https://doi.org/10.1016/0076-6879(90)87050-D
  13. Jacobs, B. P. and Browner, W. S. (2000) Ginkgo biloba: A living fossil. Am. J. Med. 108, 341-342. https://doi.org/10.1016/S0002-9343(00)00290-4
  14. Kalman, S., Mitchell, W., Marathe, R., Lammel, C., Fan, L., Hyman, R. W., Olinger, L., Grimwood, L., Davis, R. W. and Stephens, R. S. (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21, 385-389. https://doi.org/10.1038/7716
  15. Kumar, S., Tamura, K., Jakobsen, I. B. and Nei, M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  16. Lange, B. M., Rujan, T., Martin, W. and Croteau, R. (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97, 13172-13177. https://doi.org/10.1073/pnas.240454797
  17. Laurain, D., Tremouillaux, G. J., Chenieux, J. C. and van Beek, T. A. (1997) Production of ginkgolide and bilobalide in transformed and gametophyte derived cell cultures of Ginkgo biloba. Phytochemistry 46, 127-130. https://doi.org/10.1016/S0031-9422(97)00217-3
  18. Liao, Z., Chen, M., Gong, Y., Guo, L., Tan, Q., Feng, X., Sun, X., Tan, F. and Tang, K. (2004) A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq. 15, 153-158. https://doi.org/10.1080/10425170410001667348
  19. Lichtenthaler, H. K., Zeidler, J., Schwender, J. and Muller, C. (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z. Naturforsch. (C) 55, 305-313.
  20. Rodriguez-Concepion, M. (2004) The MEP pathway: A new target for the development of herbicides, antibiotics and antimalarial drugs. Curr. Pharm. Des. 10, 2391-2400. https://doi.org/10.2174/1381612043384006
  21. Rodriguez-Concepcion, M. and Boronat, A. (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079-1089. https://doi.org/10.1104/pp.007138
  22. Rohmer, M. (1998). Isoprenoid biosynthesis via the mevalonateindependent route, a novel target for antibacterial drugs? Prog. Drug Res. 50, 135-154.
  23. Sacchettini, J. C. and Poulter, C. D. (1997) Biochemistry - creating isoprenoid diversity. Science 277, 1788-1789. https://doi.org/10.1126/science.277.5333.1788
  24. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  25. Sasaki, S., Obara, M., Kashiba, K., Sato, T., Yano, M., Ebitani, T. and Yamaya, T. (2002) Linkage analysis and characterization for QTL on chromosome 2 that associated with cytosolic glutamine synthetase content and panicle weight in rice (Oryza sativa L.). Plant Cell Physiol. 43, 71-71.
  26. Schwarz, M. and Arigoni, D. (1999) Ginkgolide biosynthesis; in Comprehensive Natural Product Chemistry, Cane, D. (ed.), pp. 367-399, Pergamon, Oxford, UK.
  27. Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385. https://doi.org/10.1093/nar/gkg520
  28. Sprenger, G. A., Schorken, U., Wiegert, T., Grolle, S., deGraaf, A. A., Taylor, S. V., Begley, T. P., Bringermeyer, S. and Sahm, H. (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-Dxylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc. Natl. Acad. Sci. USA 94, 12857-12862. https://doi.org/10.1073/pnas.94.24.12857
  29. Steinbacher, S., Kaiser, J., Wungsintaweekul, J., Hecht, S., Eisenreich, W., Gerhardt, S., Bacher, A. and Rohdich, F. (2002) Structure of 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J. Mol. Biol. 316, 79-88. https://doi.org/10.1006/jmbi.2001.5341
  30. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R. L., Zhao, Q. X., Koonin, E. V. and Davis, R. W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754-759. https://doi.org/10.1126/science.282.5389.754
  31. Vanbeek, T. A., Scheeren, H. A., Rantio, T., Melger, W. C. and Lelyveld, G. P. (1991) Determination of Ginkgolides and Bilobalide in Ginkgo biloba Leaves and Phytopharmaceuticals. J. Chromatography 543, 375-387. https://doi.org/10.1016/S0021-9673(01)95789-9
  32. Veau, B., Courtois, M., Oudin, A., Chenieux, J. C., Rideau, M. and Clastre, M. (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim. Biophys. Acta 1517, 159-163. https://doi.org/10.1016/S0167-4781(00)00240-2
  33. Zeidler, J. G., Lichtenthaler, H. K., May, H. U. and Lichtenthaler, F. W. (1997) Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Z. Naturforsch. (C) 52, 15-23.

Cited by

  1. Biotechnology for the production of essential oils, flavours and volatile isolates. A review. vol.25, pp.5, 2010, https://doi.org/10.1002/ffj.1996
  2. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study vol.92, pp.2, 2007, https://doi.org/10.1007/s11120-007-9210-0
  3. Biotechnological approaches to enhance the biosynthesis of ginkgolides and bilobalide in Ginkgo biloba vol.12, pp.1, 2013, https://doi.org/10.1007/s11101-013-9275-7
  4. Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae vol.155, pp.6, 2009, https://doi.org/10.1099/mic.0.026724-0
  5. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111536
  6. EalspF1, Essential Enzyme in Isoprenoid Biosynthesis from Eupatorium adenophorum, Reveals a Novel Role in Light Acclimation vol.13, pp.5, 2014, https://doi.org/10.1016/S2095-3119(13)60519-5
  7. Molecular and functional characterization of a Brmecp gene encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Brassica rapa vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.189
  8. Arabidopsis AMY1 expressions and early flowering mutant phenotype vol.42, pp.2, 2009, https://doi.org/10.5483/BMBRep.2009.42.2.101
  9. Structural and biochemical perspectives in plant isoprenoid biosynthesis vol.12, pp.2, 2013, https://doi.org/10.1007/s11101-013-9284-6
  10. Terpene Specialized Metabolism inArabidopsis thaliana vol.9, 2011, https://doi.org/10.1199/tab.0143
  11. Characterization and Transcriptional Profiling of Ginkgo biloba Mevalonate Diphosphate Decarboxylase Gene (GbMVD) Promoter Towards Light and Exogenous Hormone Treatments vol.34, pp.3, 2016, https://doi.org/10.1007/s11105-015-0947-x
  12. Molecular cloning and characterization of a 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase gene from Cephalotaxus harringtonia vol.36, pp.7, 2009, https://doi.org/10.1007/s11033-008-9377-2
  13. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? vol.51, pp.2, 2012, https://doi.org/10.1016/j.plipres.2011.12.001
  14. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L. vol.8, 2017, https://doi.org/10.3389/fpls.2017.00872
  15. Research Progress in Gene Cloning in Forest Trees vol.46, pp.1, 2011, https://doi.org/10.3724/SP.J.1259.2011.00079
  16. Biosynthesis of isoprenoids in plants: Structure of the 2C-methyl-d-erithrytol 2,4-cyclodiphosphate synthase fromArabidopsis thaliana. Comparison with the bacterial enzymes vol.16, pp.9, 2007, https://doi.org/10.1110/ps.072972807
  17. Transcriptome analysis of Ginkgo biloba kernels vol.6, 2015, https://doi.org/10.3389/fpls.2015.00819