DOI QR코드

DOI QR Code

Oxidative Modification of Human Ceruloplasmin by Methylglyoxal: An in vitro study

  • Received : 2006.02.03
  • Accepted : 2006.03.14
  • Published : 2006.05.31

Abstract

Methylglyoxal (MG) is an endogenous physiological metabolite which is present in increased concentrations in diabetics. MG reacts with the amino acids of proteins to form advanced glycation end products. In this in vitro study, we investigated the effect of MG on the structure and function of ceruloplasmin (CP) a serum oxidase carrier of copper ions in the human. When CP was incubated with MG, the protein showed increased electrophoretic mobility which represented the aggregates at a high concentration of MG (100 mM). MG-mediated CP aggregation led to the loss of enzymatic activity and the release of copper ions from the protein. Radical scavengers and copper ion chelators significantly prevented CP aggregation. CP is an important protein that circulates in plasma as a major copper transport protein. It is suggested that oxidative damage of CP by MG may induce perturbations of the copper transport system and subsequently lead to harmful intracellular condition. The proposed mechanism, in part, may provide an explanation for the deterioration of organs in the diabetic patient.

Keywords

References

  1. Berlett, B. S. and Stadtman, E. R. (1997) Protein oxidation in aging, diseases, and oxidative stress. J. Biol. Chem. 272, 20313-2031 https://doi.org/10.1074/jbc.272.33.20313
  2. Brownlee, M., Cerami, A. and Vlassara, H. (1988) Advanced glycosylation end products in tissue and biochemical basis of diabetic complications. N. Eng. J. Med. 318, 1315-1321 https://doi.org/10.1056/NEJM198805193182007
  3. Choi, S. Y., Kwon, H. Y., Kwon, O. B. and Kang, J. H. (1999) Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine. Biochim. Biophys. Acta 1472, 651-657 https://doi.org/10.1016/S0304-4165(99)00189-0
  4. Choi, S. Y., Kwon, H. Y., Kwon, O. B., Eum, W. S. and Kang, J. H. (2000) Fragmentation of human ceruloplasmin induced by hydrogen peroxide. Biochimie 82, 175-180 https://doi.org/10.1016/S0300-9084(00)00380-1
  5. Eum, W. S., Choi, H. S., Kim D. W., Jang, S. H., Choi, S. H., Kim, S. Y., Park, J., Kang, J. H., Cho, S. W., Kwon, O. S., Hwang, I. K., Yoo, K.-Y., Kang, T.-C. Won, M. H. and Choi, S. Y. (2005) Production and characterization of monoclonal antibodies against human ceruloplasmin. J. Biochem. Mol. Biol. 38, 71-76 https://doi.org/10.5483/BMBRep.2005.38.1.071
  6. Fleming, R. E., Whitman, I. P. and Gitlin, J. D. (1991) Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am. J. Physiol. 260, 68-74
  7. Goldstein, I. M., Kaplan, H. B., Edelson, H. S. and Weissmann, G.. (1979) Ceruloplasmin. A scavenger of superoxide anion radicals. J. Biol. Chem. 254, 4040-4045
  8. Halliwell, B. and Gutteridge, J. M. C. (1999) Oxidative stress: adaptation, damage, repair and death; in Free Radicals in Biology and Medicine, Halliwell, B. and Gutteridge, J. M. C. (eds), pp. 257-262, Oxford, New York, USA
  9. Jiang, Z.-Y., Woollard, A. C. S. and Wolff, S. P. (1990) Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 268, 69-71 https://doi.org/10.1016/0014-5793(90)80974-N
  10. Kang, J. H. (2004) Modification of Cu,Zn-superoxide dismutase by oxidized catecholamines. J. Biochem. Mol. Biol. 37, 325- 329 https://doi.org/10.5483/BMBRep.2004.37.3.325
  11. Kim, S. M. and Kang, J. H. (1997) Peroxidative activity of human Cu,Zn-superoxide dismutase. Mol. Cells 7, 120-124
  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  13. Monnier, V. M. and Cerami, A. (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 214, 491-493
  14. Monnier, V. M., Sell, D. R., Nagaraj, R. H., Miyata, S., Grandhee, S., Odetti, P. and Ibrahim, S. A. (1992) Maillard reactionmediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging and uremia. Diabete 41, 36- 41 https://doi.org/10.2337/diab.41.2.S36
  15. Monnier, V. M., Vishwanath, V., Frank, K. E., Elmets, C. A., Dauchot, P. and Kohn, R. R. (1986) Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N. Engl. J. Med. 314, 403-408 https://doi.org/10.1056/NEJM198602133140702
  16. Nagaraj, R., Shipanova, I. N. and Faust, F. (1996) Protein crosslinking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 271, 19338-19345 https://doi.org/10.1074/jbc.271.32.19338
  17. Ortwerth, B. J., James, H., Simpson, G. and Linetsky, M. (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3- deoxyosones. Biochem. Biophys. Res. Commun. 245, 161-165 https://doi.org/10.1006/bbrc.1998.8401
  18. Reynolds, T. M. (1965) Chemistry of nonenzymic browning. II. Adv. Food. Res. 14, 167-283 https://doi.org/10.1016/S0065-2628(08)60149-4
  19. Ryden, L. (1984) Ceruloplasmin: in Copper proteins and copper enzymes, Lantie, R. (ed), pp. 37-100, CRC, Boca Raton, USA
  20. Shipanova, I. N., Glomb, M. A. and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29-36 https://doi.org/10.1006/abbi.1997.0195
  21. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.-H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  22. Swain, J. A., Darley-Usmar, V. and Gutteridge, J. M. (1994) Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett. 342, 49-53 https://doi.org/10.1016/0014-5793(94)80582-2
  23. Thornalley, P. J., Langborg, A. and Minhas, H. S. (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109-116 https://doi.org/10.1042/0264-6021:3440109
  24. Winyard, P., Lunec, J., Brailsford, S. and Blake, D. (1984) Action of free radical generating systems upon the biological and immunological properties of caeruloplasmin. Int. J. Biochem, 16, 1273-1278 https://doi.org/10.1016/0020-711X(84)90227-1
  25. Yim, H.-S., Kang, S.-O., Hah, Y.-C., Chock, P. B. and Yim, M. B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-crosslinked free radicals. J. Biol. Chem. 270, 28228-28233 https://doi.org/10.1074/jbc.270.47.28228

Cited by

  1. Methylglyoxal-induced modification causes aggregation of myoglobin vol.155, 2016, https://doi.org/10.1016/j.saa.2015.10.022
  2. METHYLGLYOXAL, DIABETES MELLITUS AND DIABETIC COMPLICATIONS vol.23, pp.1-2, 2008, https://doi.org/10.1515/DMDI.2008.23.1-2.93
  3. Naturally occurring inhibitors against the formation of advanced glycation end-products vol.2, pp.6, 2011, https://doi.org/10.1039/c1fo10034c
  4. In Vitro Study on Structural Alteration of Myoglobin by Methylglyoxal vol.32, pp.3, 2013, https://doi.org/10.1007/s10930-013-9480-7
  5. Fructose-induced structural and functional modifications of hemoglobin: Implication for oxidative stress in diabetes mellitus vol.1780, pp.5, 2008, https://doi.org/10.1016/j.bbagen.2008.02.001
  6. Comparison of glycation of glutathione S-transferase by methylglyoxal, glucose or fructose vol.357, pp.1-2, 2011, https://doi.org/10.1007/s11010-011-0903-5
  7. The Role of Cadmium in Proteins Glycation by Glucose: Formation of Methylglyoxal and Hydrogen Peroxide in Vitro vol.3, pp.1, 2014, https://doi.org/10.12720/jomb.3.1.59-62
  8. Shortage of Lipid-radical Cycles in Membranes as a Possible Prime Cause of Energetic Failure in Aging and Alzheimer Disease vol.32, pp.8, 2007, https://doi.org/10.1007/s11064-007-9322-0
  9. Structural alterations of hemoglobin and myoglobin by glyoxal: A comparative study vol.66, 2014, https://doi.org/10.1016/j.ijbiomac.2014.02.034