References
- Berlett, B. S. and Stadtman, E. R. (1997) Protein oxidation in aging, diseases, and oxidative stress. J. Biol. Chem. 272, 20313-2031 https://doi.org/10.1074/jbc.272.33.20313
- Brownlee, M., Cerami, A. and Vlassara, H. (1988) Advanced glycosylation end products in tissue and biochemical basis of diabetic complications. N. Eng. J. Med. 318, 1315-1321 https://doi.org/10.1056/NEJM198805193182007
- Choi, S. Y., Kwon, H. Y., Kwon, O. B. and Kang, J. H. (1999) Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine. Biochim. Biophys. Acta 1472, 651-657 https://doi.org/10.1016/S0304-4165(99)00189-0
- Choi, S. Y., Kwon, H. Y., Kwon, O. B., Eum, W. S. and Kang, J. H. (2000) Fragmentation of human ceruloplasmin induced by hydrogen peroxide. Biochimie 82, 175-180 https://doi.org/10.1016/S0300-9084(00)00380-1
- Eum, W. S., Choi, H. S., Kim D. W., Jang, S. H., Choi, S. H., Kim, S. Y., Park, J., Kang, J. H., Cho, S. W., Kwon, O. S., Hwang, I. K., Yoo, K.-Y., Kang, T.-C. Won, M. H. and Choi, S. Y. (2005) Production and characterization of monoclonal antibodies against human ceruloplasmin. J. Biochem. Mol. Biol. 38, 71-76 https://doi.org/10.5483/BMBRep.2005.38.1.071
- Fleming, R. E., Whitman, I. P. and Gitlin, J. D. (1991) Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am. J. Physiol. 260, 68-74
- Goldstein, I. M., Kaplan, H. B., Edelson, H. S. and Weissmann, G.. (1979) Ceruloplasmin. A scavenger of superoxide anion radicals. J. Biol. Chem. 254, 4040-4045
- Halliwell, B. and Gutteridge, J. M. C. (1999) Oxidative stress: adaptation, damage, repair and death; in Free Radicals in Biology and Medicine, Halliwell, B. and Gutteridge, J. M. C. (eds), pp. 257-262, Oxford, New York, USA
- Jiang, Z.-Y., Woollard, A. C. S. and Wolff, S. P. (1990) Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 268, 69-71 https://doi.org/10.1016/0014-5793(90)80974-N
- Kang, J. H. (2004) Modification of Cu,Zn-superoxide dismutase by oxidized catecholamines. J. Biochem. Mol. Biol. 37, 325- 329 https://doi.org/10.5483/BMBRep.2004.37.3.325
- Kim, S. M. and Kang, J. H. (1997) Peroxidative activity of human Cu,Zn-superoxide dismutase. Mol. Cells 7, 120-124
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
- Monnier, V. M. and Cerami, A. (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 214, 491-493
- Monnier, V. M., Sell, D. R., Nagaraj, R. H., Miyata, S., Grandhee, S., Odetti, P. and Ibrahim, S. A. (1992) Maillard reactionmediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging and uremia. Diabete 41, 36- 41 https://doi.org/10.2337/diab.41.2.S36
- Monnier, V. M., Vishwanath, V., Frank, K. E., Elmets, C. A., Dauchot, P. and Kohn, R. R. (1986) Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N. Engl. J. Med. 314, 403-408 https://doi.org/10.1056/NEJM198602133140702
- Nagaraj, R., Shipanova, I. N. and Faust, F. (1996) Protein crosslinking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 271, 19338-19345 https://doi.org/10.1074/jbc.271.32.19338
- Ortwerth, B. J., James, H., Simpson, G. and Linetsky, M. (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3- deoxyosones. Biochem. Biophys. Res. Commun. 245, 161-165 https://doi.org/10.1006/bbrc.1998.8401
- Reynolds, T. M. (1965) Chemistry of nonenzymic browning. II. Adv. Food. Res. 14, 167-283 https://doi.org/10.1016/S0065-2628(08)60149-4
- Ryden, L. (1984) Ceruloplasmin: in Copper proteins and copper enzymes, Lantie, R. (ed), pp. 37-100, CRC, Boca Raton, USA
- Shipanova, I. N., Glomb, M. A. and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29-36 https://doi.org/10.1006/abbi.1997.0195
- Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.-H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
- Swain, J. A., Darley-Usmar, V. and Gutteridge, J. M. (1994) Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett. 342, 49-53 https://doi.org/10.1016/0014-5793(94)80582-2
- Thornalley, P. J., Langborg, A. and Minhas, H. S. (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109-116 https://doi.org/10.1042/0264-6021:3440109
- Winyard, P., Lunec, J., Brailsford, S. and Blake, D. (1984) Action of free radical generating systems upon the biological and immunological properties of caeruloplasmin. Int. J. Biochem, 16, 1273-1278 https://doi.org/10.1016/0020-711X(84)90227-1
- Yim, H.-S., Kang, S.-O., Hah, Y.-C., Chock, P. B. and Yim, M. B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-crosslinked free radicals. J. Biol. Chem. 270, 28228-28233 https://doi.org/10.1074/jbc.270.47.28228
Cited by
- Methylglyoxal-induced modification causes aggregation of myoglobin vol.155, 2016, https://doi.org/10.1016/j.saa.2015.10.022
- METHYLGLYOXAL, DIABETES MELLITUS AND DIABETIC COMPLICATIONS vol.23, pp.1-2, 2008, https://doi.org/10.1515/DMDI.2008.23.1-2.93
- Naturally occurring inhibitors against the formation of advanced glycation end-products vol.2, pp.6, 2011, https://doi.org/10.1039/c1fo10034c
- In Vitro Study on Structural Alteration of Myoglobin by Methylglyoxal vol.32, pp.3, 2013, https://doi.org/10.1007/s10930-013-9480-7
- Fructose-induced structural and functional modifications of hemoglobin: Implication for oxidative stress in diabetes mellitus vol.1780, pp.5, 2008, https://doi.org/10.1016/j.bbagen.2008.02.001
- Comparison of glycation of glutathione S-transferase by methylglyoxal, glucose or fructose vol.357, pp.1-2, 2011, https://doi.org/10.1007/s11010-011-0903-5
- The Role of Cadmium in Proteins Glycation by Glucose: Formation of Methylglyoxal and Hydrogen Peroxide in Vitro vol.3, pp.1, 2014, https://doi.org/10.12720/jomb.3.1.59-62
- Shortage of Lipid-radical Cycles in Membranes as a Possible Prime Cause of Energetic Failure in Aging and Alzheimer Disease vol.32, pp.8, 2007, https://doi.org/10.1007/s11064-007-9322-0
- Structural alterations of hemoglobin and myoglobin by glyoxal: A comparative study vol.66, 2014, https://doi.org/10.1016/j.ijbiomac.2014.02.034