음식물 쓰레기 동시당화 발효에 의한 에탄올 생산

Ethanol Production by Synchronous Saccharification and Fermentation using Food Wastes

  • 한효정 (전남대학교 지구환경공학과) ;
  • 리홍선 (전남대학교 지구환경공학과) ;
  • 김성준 (전남대학교 지구환경공학과)
  • Han, Hyo-Jung (Department of Environmental Engineering, Chonnam National University) ;
  • Li, Hong-xian (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University)
  • 발행 : 2006.12.30

초록

본 연구에서는 에탄올의 생산단가를 낮추기 위해, 음식물쓰레기 당화액을 이용하여 효소당화비용을 줄이고 환원당의 기질저해를 감소시키기 위해 회분식의 반연속식 동시당화발효 시스템을 개발하였다. 음식물쓰레기 200 g와 최종효소액 (amylase 기준으로 $3.0\;U/m{\ell}$) $40\;m{\ell}$가 반응하였을 때 생산되는 환원당의 속도는 $35^{\circ}C$에서 $5.84\;g/{\ell}{\cdot}h$로서, strain KJ가 소비하는 환원당 속도는 $-3.88\;g/{\ell}{\cdot}h$와 비슷하여 동시당화발효의 최적온도는 $35^{\circ}C$로 결정되었다. 그리고 음식물쓰레기 당화를 위한 최적 효소농도는 $2.0\;U/m{\ell}$로서 생산되는 환원당의 속도는 4.80 g/L h이었다. 이는 에탄올 생산균주가 $35^{\circ}C$에서 소비하는 환원당의 속도인 $-3.88\;g/{\ell}{\cdot}hr$와 비슷하므로, 효소의 최적농도는 $2.0\;U/m{\ell}$로 결정하였다. Fed-batch식 동시당화발효에서 생산된 환원당을 다 소모하고 나서 12시간 단위로 음식물쓰레기를 공급하여 배양한 결과, 배양 120시간째 에탄올발효 후의 잔존 환원당 농도는 $18.3\;g/{\ell}$, 생성된 에탄올 농도는 $64\;g/{\ell}$, 에탄올의 수율은 0.45 g-ethanol/g-reducing sugar이었다. 그리하여 음식물쓰레기의 Fed-batch식 동시당화발효기술을 개발하여 효소당화비용을 줄이고 환원당의 기질저해를 감소시킴으로써 에탄올 수율을 향상시키는데 성공하였다.

For the economically feasible production of ethanol, utilization of SFW (saccharified food wastes) as substrate for synchronous saccharification and fermentation (SSF) process was developed in this study. When 200 g of food wastes and 40 mL of enzyme ($amylase activity,\;3.0\;U/m{\ell}$) were reacted, production rate of reducing sugar was $5.84\;g/{\ell}{\cdot}h$, and consumption rate was $-3.88\;g/{\ell}{\cdot}h\;at\;35^{\circ}C$ So suitable condition of SSF was concluded at temperature of $35^{\circ}C$. Also, optimal enzyme concentration of SSF was concluded in $2.0\;U/m{\ell}$, at this condition, the production rate of reducing sugar was $4.80\;g/{\ell}{\cdot}h$ At SSF process, when 50 g of food wastes was supplied in 12 h interval, $64\;g/{\ell}$ of ethanol and 0.45 g-ethanol/g-reducing sugar in yield were obtained in 120 h fermentation. Thus, the technology of high yield of ethanol production using food wastes was confirmed. And semi-continuos SSF system for cutting off cost of enzymatic saccharification was developed in this study.

키워드

참고문헌

  1. Park S. Y., M. S. Kim, and K. Kim (1996), Direct ethanol production from starch substrate by polyploid recombinant yeast secreting both $\alpha$-amylase and glucoamylase, Kor. J. Appl. Microbial. Biotechnol. 2, 604-612
  2. Han H. J. and S. J. Kim (2006), Isolation and characterization of a strain for economical ethanol production, Kor. J. Biotechnol. Bioeng. 21, 237-242
  3. Takagi, M., S. Abe, S. Suzuki, G. H. Emert, and N. Yata (1977), Symposium of bioconversion of cellulose substances in energy, Chemicals and Microbial protein, IIT, Delhi, 554
  4. Hong, Y. K. (1995), Improvement of ethanol yield by strain development and cell-immobilization for simultaneous saccharification and fermentation of cellulosic materials, The university of Suwon
  5. Kwon J. K., H. S. Moon, J. S. Kim, S. W. Kim, and S. I. Hong (1999), Fed-batch simultaneous saccharification and fermentation of waste paper to ethanol, Kor. J. Biotechnol. Bioeng. 14, 24-30
  6. Cysewski, G. R. and C. R. Wilke (1978), Process design and economic studies of alternative fermentation methods for the production of ethanol, Biotechnol. Bioeng. 20, 1421-1444 https://doi.org/10.1002/bit.260200908
  7. Dzenis, A. and J. McNab (1984), Commercial recovery processes for ethyl alcohol, In Proc. IV International Symp. Alcohol Fuels Technol, 2, 128-131
  8. Gulati, M. G., P. J. Westgate, M. Brewer, R. Hendrickson, and M. R. Ladish (1996), Sorptive recovery of dilute ethanol from distillation column bootoms stream, Appl. Biochem. BiotechnoI. 57/58, 103-119 https://doi.org/10.1007/BF02941692
  9. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003), 'Isolation and characteristics of Trichoderma harzianum FJI producing cellulases and xylanase', J. Microbiol. Biotechnol. 13, 1-8
  10. Mandel, M. and D. sternberg (1976), Recent advances in cellulase technology, J. Ferment. Technol. 54, 267-286
  11. Thomas, M. W. and K. M. Bhat (1988), Methods for measuring cellulase activities, Methods Enzymol. 160, 87-1l2 https://doi.org/10.1016/0076-6879(88)60109-1
  12. Ghose T. K. and R. D. Tyagi (1979), Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and fermentor desine, Biotechnol. Bioeng. 21, 1401-1420 https://doi.org/10.1002/bit.260210808