Effect of Sulfate Source on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-Contaminated Soil

Pnenanthrene-오염토양의 동전기 생물학적복원에서 제거효율에 대한 황산염원의 영향

  • Kim, Sang-Joon (The Korean Intellectual Property Office) ;
  • Park, Ji-Yeon (Korea Institute of Energy Research) ;
  • Lee, You-Jin (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, KAIST)
  • Published : 2006.12.30

Abstract

This study investigated the effect of sulfate source on removal efficiency in electrokinetic bioremediation which needs sulfate to degrade contaminants by an applied microorganism. The representative contaminant and the applied microorganism were phenanthrene and Sphingomonas sp. 3Y, respectively. When magnesium sulfate was used, the magnesium ion combined with hydroxyl ion electrically-generated at cathode to cause the decrease of electrolyte pH, and then the microbial activity was inhibited by that. When ammonium sulfate and disodium sulfate were used to solve the pH control problem, the pH values of electrolyte and soil solution were maintained neutrally, and also the high microbial activity was observed. With the former sulfate source, however, ammonium retarded the phenanthrene degradation, and so the removal efficiency decreased to 12.0% rather than 21.8% with magnesium sulfate. On the other hand, the latter improved the removal efficiency to 27.2%. This difference of removal efficiency would be outstanding for an elongated treatment period.

본 연구는 미생물이 오염물 분해를 위해 황산염이 필요한 동전기 생물학적복원에서 황산염원의 종류가 제거효율에 미치는 영향을 조사하였다. 대표오염물과 적용 미생물은 각각 phenanthrene과 Sphingomonas sp. 3Y였다. Magnesium sulfate를 이용했을 때 Mg이온은 음극에서 전기적으로 생성되는 수산화이온과 결합하여 전해질 pH를 크게 감소시키고 미생물활성을 저해하는 현상이 관찰되었다. 따라서 ammonium sulfate와 disodium sulfate를 이용했을 때 전해질 및 토양 pH가 중성영역으로 유지되었으며 미생물 활성도 높게 유지되었다. 하지만 전자의 경우 ammonium이 미생물의 오염물 분해를 지연시켜 제거효율이 오히려 magnesium sulfate의 21.8%보다 12.0%로 더 낮게 나타났으며, 반면 후자의 경우 27.2%로 제거효율이 증가된 것을 관찰할 수 있었다. 이와 같은 제거효율의 차이는 장기간의 처리에서는 더욱 두드러질 것으로 예상된다.

Keywords

References

  1. Cookson, J. T. (1995), Bioremediation Engineeing, McGraw-Hill Inc., USA
  2. Mohammed, N. (1996), State-of-the-art review of bioremediation studies, J. Environ. Sci. Hlth. A31(7), 1547-1574
  3. Luo, Q., Zhang, X., Wang, H., and Y Qian (2005), The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil, J. Hazard Mater. B121, 187-194
  4. Kim, S. J., Park, J. Y., Lee, Y. J., Lee, J. Y., and Yang, J. W. (2005), Application of a new electrolyte circulation method for ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite, J. Hazard Mater. B118, 171-176
  5. Clarke, R. L., Lageman, R, Pool, W., and S. R. Clarke (1998), Electrochemically-aided biodigestion of organic materials, US Patent 5,846,393
  6. DeFlaun, M. F. and C. W. Condee (1997), Electrokinetic transport of bacteria, J. Hazard Mater. 55, 263-277 https://doi.org/10.1016/S0304-3894(97)00023-X
  7. Shapiro A. P. and R. F. Probstein (1993), Removal of contaminants from saturated clay by electroosmosis, Environ. Sci. Technol. 27(2), 283-291 https://doi.org/10.1021/es00039a007
  8. Acar, Y. B. and A. N. Alshawabkeh (1996), Electrokinetic remediation. I. Pilot-scale tests with lead spiked kaolinite, J. Geotec. Eng. 122, 173-185 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  9. Pamukcu, S., Weeks, A., and J. K. Witde (1997), Electrochemical extraction and stabilization of selected inorganic species in porous media, J. Hazard Mater. 55, 305-318 https://doi.org/10.1016/S0304-3894(97)00025-3
  10. Acar, Y. B. and A. N. Alshawabkeh (1993), Principles of electrokinetic remediation, Environ. Sci. Technol. 27, 2638-2647 https://doi.org/10.1021/es00049a002
  11. Cooper, D. A., Peterson, K, and D. Simpson (1996), Hydrocarbon, PAH and PCB emissions from ferries: A case study in the Skagerak-Kattegatt-Oresund region, Atmos. Environ. 30, 2463-2473 https://doi.org/10.1016/1352-2310(95)00494-7
  12. Zhu, W. H., Ke, J. J., Yu, H. M., and D. J. Zhang (1995), A study of the electrochemistry of nickel hydroxide electrodes with various additives, J. Power Sources 56(1), 75-79 https://doi.org/10.1016/0378-7753(95)80011-5
  13. Kim, S. J., Park, J. Y, Lee, Y. J., and J. W. Yang (2005), Bacterial behavior in soil under electric field and its effect on electrokinetic bioremediation. Kor. J. Biotechnol. Bioeng (submitted)
  14. Hamed, J., Acar, Y. B., and R. Gale (1991), Pb(II) removal from kaolinite by electrokinetics, J. Geotech. Engin. 117, 241-271 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(241)
  15. Yuan, S. Y, Chang, J. S., and J. H. Yen (2001), Biodegradation of phenanthrene in river sediment, Chemosphere 43, 273-278 https://doi.org/10.1016/S0045-6535(00)00139-9
  16. Huckel, M., H. J. Wirth, and T. W. Hearn (1996), Porous zirconia: a new support material for enzyme immobilization, J. Biochem. Biophys. Methods. 31, 165-179 https://doi.org/10.1016/0165-022X(95)00035-P
  17. Ding, L. and B. Qu (2001), New supports for enzyme immobilization based on the copolymers of poly and ${\alpha}-{\omega}-poly$, React. Funct. Polymers 49, 67-76 https://doi.org/10.1016/S1381-5148(01)00060-8