Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study

  • Kim, Chang-Joon (Department of Chemical and Biological Engineering and ERI, Gyeongsang National University) ;
  • Lee, Sang-Jong (STR Biotech. Co., Ltd.) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chun, Gie-Taek (Department of Molecular Bioscience, Kangwon National University) ;
  • Jeong, Yeon-Ho (Department of Molecular and Medical Biotechnology, Kangwon National University) ;
  • Kim, Sung-Bae (Department of Chemical and Biological Engineering and ERI, Gyeongsang National University)
  • 발행 : 2006.12.31

초록

The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.

키워드

참고문헌

  1. Tudzynski, B. (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl. Microbiol. Biotechnol. 52: 298-310 https://doi.org/10.1007/s002530051524
  2. Kumar, P. K. R. and B. K. Lonsane (1988) Immobilized growing cells of Gibberella fujikuroi P-3 for production of gibberellic acid and pigment in batch and semi-continuous cultures. Appl. Microbiol. Biotechnol. 28: 537-542
  3. Gbewonyo, K. and D. I. C. Wang (1983) Confining mycelial growth to porous microbeads: A novel technique to alter the morphology of non-newtonian mycelial cultures. Biotechnol. Bioeng. 25: 967-983 https://doi.org/10.1002/bit.260250407
  4. Gbewonyo, K. and D. I. C Wang (1983) Enhancing gasliquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column. Biotechnol. Bioeng. 25: 2873-2887 https://doi.org/10.1002/bit.260251206
  5. Constantinides, A. and N. Mehta (1991) Periodic operation of immobilized live cell bioreactor for the production of candicidin. Biotechnol. Bioeng. 37: 1010-1020 https://doi.org/10.1002/bit.260371105
  6. Sarra, M., C. Casas, and F. Godia (1997) Continuous production of a hybrid antibiotic by Streptomyces lividans TK21 pellets in a three-phase fluidized-bed bioreactor. Biotechnol. Bioeng. 53: 601-610 https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<601::AID-BIT8>3.0.CO;2-Q
  7. Deo, Y. M. and G. M. Gaucher (1985) Effect of nitrogen supplementation on the longevity of antibiotic production by immobilized cells of Penicillium urticae. Appl. Microbiol. Biotechnol. 21: 220-227 https://doi.org/10.1007/BF00295126
  8. Kim, C. J., Y. K. Chang, G. T. Chun, Y. H. Jeong, and S. J. Lee (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Prog. 17: 453-461 https://doi.org/10.1021/bp010020k
  9. Lu, Z.-X., Z.-C. Xie, and M. Kumakura (1995) Production of gibberellic acid in Gibberella fujikuroi adhered onto polymeric fibrous carriers. Process Biochem. 30: 661-665 https://doi.org/10.1016/0032-9592(94)00042-G
  10. Escamilla, E. M., L. Dendooven, I. P. Magana, S. R. Parra, and M. De la Torre (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J. Biotechnol. 76: 147-155 https://doi.org/10.1016/S0168-1656(99)00182-0
  11. Duran-Paramo, E., H. Molina-Jimenez, M. A. Brito-Arias, and F. Robles-Martinez (2004) Gibberellic acid production by free and immobilized cells in different culture systems. Appl. Biochem. Biotechnol. 113-116: 381-388
  12. Candau, R., J. Avalos, and E. Cerda-Olmedo (1992) Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol. 100: 1184-1188 https://doi.org/10.1104/pp.100.3.1184
  13. Lee, T. H., G. T. Chun, and Y. K. Chang (1997) Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546-550 https://doi.org/10.1021/bp970069j
  14. Bruckner, B. (1992) Regulation of gibberellin formation by the fungus Gibberella fujikuroi. pp. 129-143. In: D. J. Chadwick and J. Whelan (eds.). Ciba Foundation Symposium 171. Secondary Metabolites: Their Function and Evolution. John Wiley & Sons Publishers, Chichester, UK
  15. Borrow, A., S. Brown, E. G. Jefferys, R. H. J. Kessell, E. C. Lloyd, P. B. Lloyd, A. Rothwell, B. Rothwell, and J. C. Swait (1964) The kinetics of metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 10: 407-444
  16. Nava Saucedo, J. E., J.-N. Barbotin, and D. Thomas (1989) Continuous production of gibberellic acid in a fixed-bed reactor by immobilized mycelia of Gibberella fujikuroi in calcium alginate beads. Appl. Microbiol. Biotechnol. 30: 226-233
  17. Park, Y. H., E. Y. Kim, W. T. Seo, K. H. Jung, and Y. J. Yoo (1989) Production of cephalosporin C in a fluidizedbed bioreactor. J. Ferment. Bioeng. 67: 409-414 https://doi.org/10.1016/0922-338X(89)90146-3
  18. Na, J.-G., H. H. Kim, and Y. K. Chang (2005) On-line estimation of cell growth from agitation speed in DO-stat culture of a filamentous microorganism, Agaricus blazei. Biotechnol. Bioprocess Eng. 10: 571-575 https://doi.org/10.1007/BF02932296
  19. Lim, J. S., J. H. Lee, J. M. Kim, S. W. Park, and S. W. Kim (2006) Effects of morphology and rheology on neofructosyltransferase production by Penicillium citrinum. Biotechnol. Bioprocess Eng. 11: 100-104 https://doi.org/10.1007/BF02931891
  20. Ibrahim, S., S. Vikineswary, S. Al-Azad, and L. L. Chong (2006) The effects of light intensity, inoculum size, and cell immobilization on the treatment of sago effluent with Rhodopseudomonas palustris strain B1. Biotechnol. Bioprocess Eng. 11: 377-381 https://doi.org/10.1007/BF02931860