Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Ahn, Yeong-Hee (Department of Environmental Engineering, Dong-A University) ;
  • Kim, Eun-Young (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Chang, Ho-Nam (Department of Chemical and Biomolecular Engineering, KAIST)
  • 발행 : 2006.12.31

초록

A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

키워드

참고문헌

  1. De-Bashan, L. E. and Y. Bashan (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Res. 38: 4222-4246
  2. Payne, W. J. (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37: 409-452
  3. Khin, T. and A. P. Annachhatre (2004) Novel microbial nitrogen removal processes. Biotechnol. Adv. 22: 519-532 https://doi.org/10.1016/j.biotechadv.2004.04.003
  4. Ahn, Y., W. Park, R. Tatavarty, and I. S. Kim (2004) Comparative analysis of vertical heterogeneity of microbial community in sulfur-packed reactor used for autotrophic nitrate removal. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 39: 1805-1818
  5. Chang, H. N., R. K. Moon, B. G. Park, S.-J. Lim, D.W. Choi, W. G. Lee, S. L. Song, and Y. H. Ahn (2000) Simulation of sequential batch reactor (SBR) operation for simultaneous removal of nitrogen and phosphorus. Bioprocess Eng. 23: 513-521 https://doi.org/10.1007/s004499900188
  6. Burdick, C. R., D. R. Refling, and H. D. Stensel (1982) Advanced biological treatment to achieve nutrient removal. J. Water Pollut. Control Fed. 54: 1078-1086
  7. Chudoba, P., M. Pannier, A. Truc, and R. Pujol (1998) A new fixed-film mobile bed bioreactor for denitrification of wastewaters. Water Sci. Technol. 38: 233-240
  8. Lemmer, H., A. Zaglauer, and G. Metzner (1997) Denitrification in a methanol-fed fixed-bed reactor. Part 1: physico-chemical and biological characterization. Water Res. 31: 1897-1902 https://doi.org/10.1016/S0043-1354(97)00026-2
  9. Odegaard, H., B. Rusten, and T. Westrum (1994) A new moving bed biofilm reactor - applications and results. Water Sci. Technol. 29: 157-165
  10. Fass, S., V. Ganaye, V. Urbain, J. Manem, and J. C. Block (1994) Volatile fatty acids as organic carbon sources in denitrification. Environ. Technol. 15: 459-467 https://doi.org/10.1080/09593339409385450
  11. Lim, S.-J., D. W. Choi, W. G. Lee, S. Kwon, and H. N. Chang (2000) Volatile fatty acids (VFA) production from food wastes and its application to biological nutrient removal. Bioprocess Eng. 22: 543-545 https://doi.org/10.1007/s004499900109
  12. Choi, D. W., W. G. Lee, S. J. Lim, B. J. Kim, and H. N. Chang (2003) Simulation on long-term operation of an anaerobic bioreactor for Korean food wastes. Biotechnol. Bioprocess Eng. 8: 23-31 https://doi.org/10.1007/BF02932894
  13. Lim, S.-J., R. K. Moon, W. G. Lee, S. Kwon, B. G. Park, and H. N. Chang (2000) Operation and modeling of bench-scale SBR for simultaneous removal of nitrogen and phosphorus using real wastewater. Biotechnol. Bioprocess Eng. 5: 441-448 https://doi.org/10.1007/BF02931945
  14. Tchobanoglous, G., F. L. Burton, and H. D. Stensel (2002) Wastewater Engineering: Treatment and Reuse. 4th ed., pp. 186. Metcalf & Eddy, Inc., McGrawhill, USA
  15. Ministry of Environment. http://me.go.kr
  16. Chang, H. N., S. J. Lim, W. G. Lee, and D. J. Kim (2005) Method for manufacturing anaerobic fermentation broth from organic wastes for using in nutrient removal. Korea Patent 0471963
  17. Chang, H. N., S. J. Lim, W. G. Lee, and D. J. Kim (2005) Method for biological nutrient removal in effluent from waste water treatment plant using anaerobic fermentation broth from organic wastes and high density microbial cell reactor. Korea Patent 0470956
  18. American Public Health Association (1995) Standard methods for examination of water and wastewater. 19th ed., American Public Health Association, Washington, DC, USA
  19. Huang, J.-S., J.-J. Her, and C.-G. Jih (1998) Kinetics of denitritification and denitratification in anoxic filters. Biotechnol. Bioeng. 59: 52-61 https://doi.org/10.1002/(SICI)1097-0290(19980705)59:1<52::AID-BIT7>3.0.CO;2-S
  20. Almeida, J. S., S. M. Julio, M. A. M. Reis, and M. J. T. Carrondo (1995) Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 194-201 https://doi.org/10.1002/bit.260460303
  21. Glass, C., J. Silverstein, and J. Oh (1997) Inhibition of denitrification in activated sludge by nitrite. Water Environ. Res. 69: 1086-1093 https://doi.org/10.2175/106143097X125803
  22. Jang, A., Y. Ahn, and I. S. Kim (2003) Monitoring the impact of dissolved oxygen and nitrite on anoxic biofilm in continuous denitrification process. Environ. Monit. Assess. 87: 133-144 https://doi.org/10.1023/A:1024698131900
  23. van Rijn, J., Y. Tal, and Y. Barak (1996) Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor. Appl. Environ. Microbiol. 62: 2615-2620
  24. Kim, I. S., S. E. Oh, M. S. Bum, J. L. Lee, and S. T. Lee (2002) Monitoring the denitrification of wastewater containing high concentrations of nitrate with methanol in a sulfur-packed reactor. Appl. Microbiol. Biotechnol. 59: 91-96 https://doi.org/10.1007/s00253-002-0952-5
  25. Kim, E.-W. and J.-H. Bae (2000) Alkalinity requirements and the possibility of simultaneous heterotrophic denitrification during sulfur-utilizing autotrophic denitrification. Water Sci. Technol. 42: 233-238
  26. Ohmiya, K., K. Sakka, and T. Kimura (2005) Anaerobic bacterial degradation for the effective utilization of biomass. Biotechnol. Bioprocess Eng. 10: 482-493 https://doi.org/10.1007/BF02932282
  27. Leon, V. and M. Kumar (2005) Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10: 471-481 https://doi.org/10.1007/BF02932281
  28. Tran, H.-T., Y.-J. Park, M.-K. Cho, D.-J. Kim, and D.-H. Ahn (2006) Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor. Biotechnol. Bioprocess Eng. 11: 199-204 https://doi.org/10.1007/BF02932030