Characterization of gltA::luxCDABE Fusion in Escherichia coli as a Toxicity Biosensor

  • Ahn, Joo-Myung (Graduate School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Byoung-Chan (Advanced Environmental Monitoring Research Center, Gwangju Institute of Science and Technology (GIST)) ;
  • Gu, Man-Bock (Graduate School of Life Sciences and Biotechnology, Korea University)
  • 발행 : 2006.12.31

초록

The use of gltA gene, as a new biomarker for environmental stress biomonitoring, was investigated because of its key position as the first enzyme of the tricarboxylic acid (TCA) cycle. A recombinant bioluminescent Escherichia coli strain, EBJM2, was constructed using a plasmid carrying the citrate synthase (gltA) promoter transcribing the Photorhabdus luminescens IuxCDABE genes (gltA::luxCDABE). The responses from this strain were studied with five different classes of toxicants: DNA damage chemicals, phenolics, oxidative-stress chemicals, PAHs, and organic solvents. EBJM2 responded strongly to DNA damage chemicals, such as mitomycin C (MMC) and methyl-nitro-nitrosoguanidine (MNNG) and nalidixic acid with the strongest responses. In contrast, tests with several compounds from the other four classes of toxicants gave no significant response. Therefore, EBJM2 was found to be sensitive to DNA damage chemicals.

키워드

참고문헌

  1. Pereira, D. S., L. J. Donald, D. J. Hosfield, and H. W. Duckworth (1994) Active site mutants of Escherichia coli citrate synthase. Effects of mutations on catalytic and allosteric properties. J. Biol. Chem. 269: 412-417
  2. Hull, E. P., M. E. Spencer, D. Wood, and J. R. Guest (1983) Nucleotide sequence of the promoter region of the citrate synthase gene (gltA) of Escherichia coli. FEBS Lett. 156: 366-370 https://doi.org/10.1016/0014-5793(83)80530-4
  3. Park, S. J., J. McCabe, J. Turna, and R. P. Gunsalus (1994) Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. J. Bacteriol. 176: 5086-5092
  4. Bloxham, D. P., C. J. Herbert, S. S. Ner, and W. T. Drabble (1983) Citrate synthase activity in Escherichia coli harbouring hybrid plasmids containing the gltA gene. J. Gen. Microbiol. 129: 1889-1897
  5. Spencer, M. E. and J. R. Guest (1982) Molecular cloning of four tricarboxylic acid cyclic genes of Escherichia coli. J. Bacteriol. 151: 542-552
  6. Cai, J., H. Pang, D. O. Wood, and H. H. Winkler (1995) The citrate synthase-encoding gene of Rickettsia prowazekii is controlled by two promoters. Gene 163: 115-119 https://doi.org/10.1016/0378-1119(95)00365-D
  7. Cvitkovitch, D. G., J. A. Gutierrez, and A. S. Bleiweis (1997) Role of the citrate pathway in glutamate biosynthesis by Streptococcus mutans. J. Bacteriol. 179: 650-655
  8. Lynch, A. S. and E. C. C. Lin (1996) Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J. Bacteriol. 178: 6238-6249
  9. Shalel-Levanon, S., K. Y. San, and G. N. Bennett (2005) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7: 364-374 https://doi.org/10.1016/j.ymben.2005.07.001
  10. Belkin, S. (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206- 212 https://doi.org/10.1016/S1369-5274(03)00059-6
  11. Daunert, S., G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha, and W. Smith-Spencer (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem. Rev. 100: 2705-2738 https://doi.org/10.1021/cr990115p
  12. Kim, B. C., C. H. Youn, J. M. Ahn, and M. B. Gu (2005) Screening of target-specific stress-responsive genes for the development of cell-based biosensors using a DNA microarray. Anal. Chem. 77: 8020-8026 https://doi.org/10.1021/ac0514218
  13. Gu, M. B., R. J. Mitchell, and B. C. Kim (2004) Wholecell- based biosensors for environmental biomonitoring and application. Adv. Biochem. Eng. Biotechnol. 87: 269-305
  14. Kim, Y. H., Y. H. Kim, J. S. Kim, and S. Park (2005) Development of a sensitive bioassay method for quorum sensing inhibitor screening using a recombinant Agrobacterium tumefaciens. Biotechnol. Bioprocess Eng. 10: 322-328 https://doi.org/10.1007/BF02931849
  15. Drolet, M., P. Phoenix, R. Menzel, E. Masse, L. F. Liu, and R. J. Crouch (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli ${\delta}topA$ mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc. Natl. Acad. Sci. USA 92: 3526-3530
  16. Van Dyk, T. K. and R. A. Rosson (1998) Photorhabdus luminescens luxCDABE promoter probe vectors. Methods Mol. Biol. 102: 85-95
  17. Min, J. and M. B. Gu (2003) Acclimation and repair of DNA damage in recombinant bioluminescent Escherichia coli. J. Appl. Micorbiol. 95: 479-483 https://doi.org/10.1046/j.1365-2672.2003.02001.x
  18. Choi, S. H. and M. B. Gu (2001) Phenolic toxicitydetection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ. Toxicol. Chem. 20:248-255 https://doi.org/10.1897/1551-5028(2001)020<0248:PTDACT>2.0.CO;2
  19. Storz, G. and J. A. Imlay (1999) Oxidative stress. Curr. Opin. Microbiol. 2: 188-194 https://doi.org/10.1016/S1369-5274(99)80033-2
  20. Min, J., E. J. Kim, R. A. LaRossa, and M. B. Gu (1999) Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat. Res. 442: 61-68
  21. Maruenda, H. and M. Tomasz (1996) Antisense sequence- directed cross-linking of DNA oligonucleotides by mitomycin C. Bioconjug. Chem. 7: 541-544 https://doi.org/10.1021/bc960054r
  22. McKenna, D. J., M. Gallus, S. R. McKeown, C. S. Downes, and V. J. McKelvey-Martin (2003) Modification of the alkaline Comet assay to allow simultaneous evaluation of mitomycin C-induced DNA cross-link damage and repair of specific DNA sequences in RT4 cells. DNA Repair(Amst.) 2: 879-890 https://doi.org/10.1016/S1568-7864(03)00086-7
  23. Roy, M. K., Y. Kuwabara, K. Hara, Y. Watanabe, and Y. Tamai (2002) Antimutagenic effect of amino acids on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Biosci. Biotechnol. Biochem. 66: 1400-1402 https://doi.org/10.1271/bbb.66.1400
  24. Kuzminov, A. (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage $\lambda$. Microbiol. Mol. Biol. Rev. 63: 751-813
  25. Kyrtopoulos, S. A. (1997) $O^6$-alkylguanine-DNA alkyltransferase: kinetic considerations and mechanistic implications. Mutat. Res. 379: S27
  26. Lips, L. and B. Kaina (2001) Repair of $O^6$-methylguanine is not affected by thymine base pairing and the presence of MMR proteins. Mutat. Res. 487: 59-66
  27. Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.- S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378-384 https://doi.org/10.1007/BF02931859