DOI QR코드

DOI QR Code

Estimation of Quantitative Precipitation Rate Using an Optimal Weighting Method with RADAR Estimated Rainrate and AWS Rainrate

RADAR 추정 강수량과 AWS 강수량의 최적 결합 방법을 이용한 정량적 강수량 산출

  • Oh, Hyun-Mi (Division of Earth Environmental System, Pusan National University) ;
  • Heo, Ki-Young (Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Division of Earth Environmental System, Pusan National University)
  • Published : 2006.12.30

Abstract

This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.

본 연구는 최적 결합 방법을 이용하여 다른 시공간 특징을 가진 강수량 자료를 통합하는 것이다. 최적 결합 방법은 AWS 우량계 자료와 S-band RADAR 추정 강수량을 전 시간대의 자신의 평균 제곱 오차에 반비례 하도록 디자인 하였다. 훈련시간에 따른 적절한 최적 가중치를 결정하기 위하여, 훈련시간을 1-10시간까지 실험하기 위하여 긴 기간 동안 비가 지속되었던 장마 사례에 적용하였다. 최적 결합 강수량의 수평장은 훈련시간 2시간 이후부터는 평탄화된 구조를 보여주었고, 최적 결합 강수량은 참값으로 가정한 종관관측 강수량과 수평 구조 및 값의 크기가 잘 일치하였다. 이러한 결과는 최적결합 방법이 다양한 자료들을 이용하여 고해상도의 강수량을 생산하는 데 사용할 수 있다는 것을 제시한다.

Keywords

References

  1. 하경자, 오현미, 서애숙, 김정희, 2002. TRMM/PR 자료와 지상 레이더와의 비교, 한국지리정보학회지, 5(4): 1-8
  2. Atlas, D. and A. C. Chmela, 1957. Physical-synoptic variations of drop size parameters. Proc 6th Wea. Radar Conf., Boston, USA, Amer. Meteor. Soc., 21-29
  3. Biggersfaff, M. I. and S. A. Listemaa, 2000. An improved scheme for convective/stratiform echo classfication using radar reflectivity, J. Appl, Meteor., 39: 2129-2150 https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
  4. Gargin, A., D. Rosenfeld, and R. E. Lopez, 1985. The relationship between height and precitation characteristics of summertime convective cells in Florida, J. Atmos. Sci., 43: 84-94
  5. Marshall, J. S. and W. Mck. Palmer, 1948. The distribution of raindrops size. J. Atmos. Sci., 5: 165-166 https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  6. North, G. R. and S. Nakamoto, 1989. Formalism for comparing rain estimation designs, J. of Atmospheric and Oceanic Technology, 6: 985-992 https://doi.org/10.1175/1520-0426(1989)006<0985:FFCRED>2.0.CO;2
  7. North, G. R., Samuel S. P. Shen, and R. B. Upson, 1991. Combining rain gages with satellite measurements for optimal estimates of areatime averaged rain rates, Water Resources Research, 27: 2785-2790 https://doi.org/10.1029/91WR01744
  8. Steiner, M. and R. A. Houze Jr., 1993. Three dimensional validation at TRMM ground truth sites: some early results from Darwin, Australia. Preprints, 26th Inter. Conf. Radar Meteor., Norman, USA, Amer. Meteor. Soc., 417-420
  9. Steiner, M, R. A. Houze Jr, and S. E. Yuter, 1995. Climatological characterization of threedimensional storm structure from operational radar and rain gage data, J. Appl, Meteor., 34: 1978-2007 https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
  10. Woodley, W. L., A. R. Olsen, A. Herndon, and V. Wigert, 1975. Comparison of gage and radar methods of convective rain measurement, J. Appl. Meteor., 14: 909-928 https://doi.org/10.1175/1520-0450(1975)014<0909:COGARM>2.0.CO;2