Anti-oxidative Activities of Commercial Edible Plant Extracts Distributed in Korea

국내 유통 중인 식용식물 추출물의 항산화효과

  • Kim, Kyung-Bum (Technology Research Center, Ben's Lab Co., Ltd) ;
  • Yoo, Ki-Hwan (Department pf Life Science, The University of Suwon) ;
  • Park, Ha-Yan (Department pf Life Science, The University of Suwon) ;
  • Jeong, Jong-Moon (Department pf Life Science, The University of Suwon)
  • Published : 2006.12.31

Abstract

Many plant extracts are known to have antioxidative effects. However, their activities can be reduced or disappeared during mass production process. The purpose of this study is to compare antioxidative effects of edible plant extracts distributed in Korea. forty three kinds of edible plant extracts commercially available in Korea were selected and investigated for their total phenolics contents and antioxidative potentials(DPPH radical and superoxide anion radical scavenging activities). In contents of total phenolics, the commercial plant extracts from Artemisia annua(whole plant), Ilex paraguariensis(leaf, Silybum marianum(fruit and leaf, Ulmus pumila(bark), Coliolus versicolor(fruit), and Curcuma longa(root and stem) contained over 70 mg/g of powder, DPPH radical scavenging activities($SC_{50}$, 50% scavenging concentration) of A. annua, I. paraguariensis, Pinus densiflora(leaf),S. marianum, U. pumila, and C. longa were $53.96{\pm}0.81\;ppm,\;24.61{\pm}2.12\;ppm,\;35.96{\pm}1.11\;ppm,\;57.46{\pm}2.13\;ppm,\;55.25{\pm}1.65\;ppm\;and\;12.99{\pm}1.67ppm$, respectively, while that of positive control(vitamin C) was $3.86{\pm}0.81\;ppm$. $SC_{50}$ values against superoxide anion radical of A. annua, Cinnamomum zeylanicum(bark), I. paraguariensis, Rubus coreanus(fruit and leaf), Morus alba(leaf), P. densiflora, S. marianum, U. pumila, C. versicolor, C. longa, Perilla frutescens var. acuta(leaf), and H. sabdariffa(leaf and newer) were $53.21{\pm}1.83ppm,\;50.12{\pm}2.12ppm,\;5.59{\pm}0.84ppm,\;41.60{\pm}8.93ppm,\;20.19{\pm}0.97ppm,\;15.19{\pm}1.66ppm,\;21.20{\pm}1.88ppm,\;15.71{\pm}0.91ppm,\;55.48{\pm}2.42ppm,\;52.12{\pm}2.44ppm,\;23.80{\pm}1.98ppm\;and\;11.14{\pm}0.51ppm$, respectively($SC_{50}$ value of vitamin C: $9.61{\pm}0.93ppm$). In particular, both 1 paraguariensis and P. densiflora had high content of phenolics as well as high scavenging activities of DPPH radical and superoxide anion radical. Consequently, above two commercial extracts may be useful as a source of antioxidative nutraceutics.

많은 식물 추출물들은 항산화 효능을 지니고 있으나 대량 생산 공정시 그들의 활성을 잃어버리는 경향이 있다. 따라서 본 본문에서는 대량 생산 공정을 거쳐 국내 유통 중인 43종의 식용식물 추출물을 대상으로 총 페놀 함량, DPPH 라디칼 포착 효능, 그리고 superoxide anion 라디칼 포착 효능을 측정하였다. 그 결과 개똥쑥(Artemisia annua, whole plant), 마태(Ilex paraguariensis leaf), 엉겅퀴(Silybum marianum, fruit 그리고 leaf), 유근피(Ulmus pumila, bark), 운지버섯(Coriolus versicolor, fruit) 그리고 울금(Curcuma longa, root 그리고 stem) 추출물은 70 mg/g 이상의 높은 페놀화합물을 함유하는 것으로 나타났다. DPPH 라디칼의 포착 효능에서 개똥쑥, 마테, 솔잎(Pinus densiflora, leaf), 엉겅퀴, 유근피, 그리고 울금 추출물의 $SC_{50}$ 값 측정 결과 각각 $53.96{\pm}0.81ppm,\;24.61{\pm}2.12ppm,\;35.96{\pm}1.11ppm,\;57.45{\pm}2.13ppm,\;55.25{\pm}1.65ppm$ 그리고 $12.99{\pm}1.67ppm$으로 나타났다(비타민 C의 $SC_{50}$값: $3.86{\pm}0.81ppm$). 또한 superoxide anion 라디칼 포착 효능에서는 개똥쑥, 계피(Cinnamomum zeylunicum, bark), 마테, 복분자(Rubus coreanus, fruit 그리고 leaf), 상엽(Morus alba, leaf), 솔잎, 엉겅퀴, 유근피, 운지버섯, 울금, 자소엽(Perilla frutescens var. acuta, leaf) 그리고 히비스커스(Hibiscus sabdariffa, leaf) 그리고 flower) 추출물의 $SC_{50}$ 값 측정 결과 각각 $53.21{\pm}1.83ppm,\;50.12{\pm}2.12ppm,\;5.59{\pm}0.84ppm,\;41.60{\pm}8.93ppm,\;20.19{\pm}0.97ppm,\;15.19{\pm}1.66ppm,\;21.20{\pm}1.88ppm,\;15.71{\pm}0.91ppm,\;55.48{\pm}2.42ppm,\;52.12{\pm}2.44ppm,\;23.80{\pm}1.98ppm$ 그리고 $11.14{\pm}0.51ppm$인 것으로 나타났다(비타민 C의 $SC_{50}$ 값:$9.61{\pm}0.93ppm$). 특히 마테 추출물과 솔잎 추출물은 총 페놀 함량이 높으면서 DPPH 라디칼과 superoxide anion 라디칼을 동시에 효율적으로 포착하는 효능을 지니고 있는 것으로 나타났다. 결론적으로 마테와 솔잎의 상업적인 추출물은 기능성 항산화제로서 유용한 소재로 사용 가능 할 것으로 사료된다.

Keywords

References

  1. Halliwell, B. (1991) Drug antioxidant effects. A basis for drug selection?. Drugs. 42, 569-605 https://doi.org/10.2165/00003495-199142040-00003
  2. Fukuzawa, K., and Takaishi, Y. (1990) Antioxidants. J. Act. oxyg. Free Rad. 1, 55-60
  3. Regnstrom, J., Nisson, J., Tornva, P., Landou, C., and Hamsten, A. (1992) Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet. 16, 1183-1186
  4. Gey, K. F., Puska, P., Jordan, P., and Moser, U. K. (1991) Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am. J. Clin. Nutr. 53, 326-334 https://doi.org/10.1093/ajcn/53.1.326S
  5. Abuja, P. M., and Albertini, R. (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta 306, 1-17 https://doi.org/10.1016/S0009-8981(01)00393-X
  6. Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J. L., and Mignotte. B. (1995) The biochemistry of programmed cell death. FASEB J. 9, 1277-1287 https://doi.org/10.1096/fasebj.9.13.7557017
  7. Marnett, L. J. (2000) Oxyradicals and DNA damage. Carcinogenesis. 21, 361-370 https://doi.org/10.1093/carcin/21.3.361
  8. Rice-Evans, C. A., and Diplock, A. T. (1993) Current status of antioxidant therapy. Free Radic. Biol. Med. 15, 77-96 https://doi.org/10.1016/0891-5849(93)90127-G
  9. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. 91, 10771-10778
  10. Ames, B. N. (1989) Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214, 41-46 https://doi.org/10.1016/0027-5107(89)90196-6
  11. Esterbauer, H., Eckl, P., and Ortner, A. (1990) Possible mutagens derived from lipids and lipid precursors. Mutat Res. 238, 223-233 https://doi.org/10.1016/0165-1110(90)90014-3
  12. Dizdaroglu, M., and Gajewski, E. (1990) Selected-ion mass spectrometry: assays of oxidative DNA damage. Methods Enzymol. 186, 530-540 https://doi.org/10.1016/0076-6879(90)86147-N
  13. Fedtke, N., Boucheron, J. A., Turner M. J, Jr., and Swenberg, J. A. (1990) Vinyl chloride-induced DNA adducts. I: Quantitative determination of N2,3-ethenoguanine based on electrophore labeling. Carcinogenesis. 11, 1279-1285 https://doi.org/10.1093/carcin/11.8.1279
  14. Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A., and Finkel, T. (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci. 93, 11848-11852
  15. Kitahara, K., Matsumoto, Y., Ueda, H., and Ueoka, R. (1992) A remarkable antioxidation effect of natural phenol derivatives on the autoxidation of $\gamma$-irradiated methyl linoleate. Chem. Pharm. Bull. 40, 2208-2214 https://doi.org/10.1248/cpb.40.2208
  16. Hatano, T. (1995) Constituents of natural medicines with scavenging effects on active oxygen species-Tannins and related polyphenols. Natural Medicines. 49, 357-363
  17. Masaki, H., Sakaki, S., Atsumi, T., and Sakurai, H. (1995) Active-oxygen scavenging activity of plant extracts. Biol. Pharm. Bull. 18, 162-166 https://doi.org/10.1248/bpb.18.162
  18. Cort, W. M. (1974) Antioxidant activity of tocopherols and ascorbyl palmitate their mode of action. JAOCS. 51, 321-325 https://doi.org/10.1007/BF02633006
  19. Branen, A. L. (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. JAOCS. 52, 59- 63 https://doi.org/10.1007/BF02901825
  20. Gutfinger, T. (1981) Polyphenols in olive oils. JAOCS. 58, 966- 972 https://doi.org/10.1007/BF02659771
  21. Yasushi, S., Tsukasa, N., Keiko, S., Hiroe, Y., and Hisashi, Y. (1999) Stopped-flow and spectrophotometric study on radical scavenging by tea catechins and the model compounds. Chem. Pharm. Bull. 47, 1369-1374 https://doi.org/10.1248/cpb.47.1369
  22. Jeong, D. S., Sohn, Y. K., Lee, Y. I., and Yun, I. H. (1986) Study on the chemical constituents and procwssings of Ganoderma lucidum. Annual Research Report for 1986 (Gyeongbuk Agricultural Technology Administration). 28, 140- 148
  23. Cha, B. C., Lee, S. K., Lee, H. W., and Lee, E. (1997) Antioxidative effect of domestic plants. J. Pharmacogn. 28, 15- 20
  24. Schinella, G. R., Troiani, G., Davila, V., Buschiazzo, P. M., and Tournier, H. A. (2000) Antioxidant effects of an aqueous extract of Ilex paraguariensis. Biochem Biophys Res Commun. 269, 357-360 https://doi.org/10.1006/bbrc.2000.2293