DOI QR코드

DOI QR Code

Bioconversion of Lignocellulose Materials

  • Pothiraj, C. (Dept. of Microbiology, VHNSN College) ;
  • Kanmani, P. (Dept. of Microbiology, VHNSN College) ;
  • Balaji, P. (Research Center in Botany, Thiagarajar College (Autonomous))
  • Published : 2006.12.31

Abstract

One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.

Keywords

References

  1. Akin, D. E., Rigsby, L. L. and Sethuraman, A. 1995. Alterations in the structure, chemistry and biodegradation of grass lignocellulose treated with white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol., 61: 1591-1598
  2. Arora, D. S., Chander, M. And Gill, P. K. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of wheat straw. Int. Bioterior. Biodegrad 50: 115-120 https://doi.org/10.1016/S0964-8305(02)00064-1
  3. Bao, W. and Renganathan, V. 1991. Triiodide reduction by cellobiose:quinone oxidoreductase of Phanerochaete chrysosporium. FEBS 279: 30-32 https://doi.org/10.1016/0014-5793(91)80242-U
  4. Baldrian, T. and Gabriel, J. 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220: 235-240 https://doi.org/10.1016/S0378-1097(03)00102-2
  5. Beauchemin, K. A., Colombatto, D., Morgavi, D. P. and Yang, W. Z. 2003. Use of exogenous fibrolytic enzymes to improve animal feed utilization by ruminants. J Anim. Sci. 81: E37-E47
  6. Beauchemin, K. A., Morgavi, D. P., Mcallister, T. A., Yang, W. Z. and Rode, L. M. 2001. The use of enzymes in ruminant diets. Pp 296-322. In: Wiseman, J. and Garnsworthy, P. C. Eds. Recent Advances in Animal Nutrition. Nottingham University Press
  7. Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fibre digestibility and growth rate of steers fed dry forages. Can. J Anim. Sci. 75: 641-644 https://doi.org/10.4141/cjas95-096
  8. Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  9. Betts, W. B., Dart, R. K., Ball, A. S. and Pedlar, S. L. 1991. Biosynthesis and Structure of lignocellulose. Pp 139-155. In: Betts. Ed. Biodegradation: Natural and Synthetic Materials. SpringerVerlag, Berlin, Germany
  10. Bhat, M. K. 2000. Research review paper: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383 https://doi.org/10.1016/S0734-9750(00)00041-0
  11. Bosco, F., Ruggeri, B. and Sassi, G 1999. Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem. Eng. Sci. 54: 3163-3169 https://doi.org/10.1016/S0009-2509(98)00365-0
  12. Barbonnais, R. and Paice, M. G. 1988. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju Biochem. J 255: 445-450 https://doi.org/10.1042/bj2550445
  13. Call, H. P. and Muck, I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systerns ($Lignozyme^{\circledR}$-process). J. Biotechnol. 53: 163-202 https://doi.org/10.1016/S0168-1656(97)01683-0
  14. Campbell, C. J. and Laherrere, J. H. 1998. The end of cheap oil. Sci. Am. 3: 78-83
  15. Canel, E. and Moo-Young, M. 1980. Solid state fermentation systems. Process Biochem. 15: 24-28
  16. Chahal, D. S. 1992. Bioconversions of polysaccharides of ligno- cellulose and simultaneous degradation of lignin. Pp 83-93. In: Kennedy et al. Eds. Lignocellulosics: Science, Technology, Development and Use. Ellis Horwood Limited, England
  17. Chahal, P. S., Chahal, D. S. and Le, G. B. B. 1996. Production of cellulose in solid - state fermentation with Trichoderma reesei MCG 80 on wheat straw. Appl. Biochem. Biotechnol. 57/58: 433-442 https://doi.org/10.1007/BF02941724
  18. Christopherson, C., Anderson, E., Jokobsen, T. S. and Wagner, P. 1997. Xylanases in wheat separation. Starch. 49: 5-12 https://doi.org/10.1002/star.19970490104
  19. Coombs, J. 1987. EEC resources and strategies. Phil. Trans. R. Soc. London. Ser. A. 321: 405-422 https://doi.org/10.1098/rsta.1987.0019
  20. Esterbauerm, H., Steiner, W. and Labudova, I. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol. 36: 51-65 https://doi.org/10.1016/0960-8524(91)90099-6
  21. Eveleigh, D. E. 1987. Cellulase a perspective. Phil. Trans. R. Soc.Lond. Ser. A. 321: 435-447 https://doi.org/10.1098/rsta.1987.0021
  22. Falcon, M. A., Rodriguez, A. and Carnicero, A. 1995. Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol. Biochem. 27: 121-126 https://doi.org/10.1016/0038-0717(94)00174-Y
  23. Gold, M. H. and Alic, M. 1993. Molecular biology of the lignindegrading basidiomycetes Phanerochaete chrysosporium. Microbiol. Rev. 57: 605-622
  24. Goyal, A., Ghosh, B. and Eveleigh, D. 1991. Characterisation of fungal cellulases. Biores. Technol. 36: 37-50 https://doi.org/10.1016/0960-8524(91)90098-5
  25. Grethlein, H. E. and Converse, A. O. 1991. Common Aspects of acid prehydrolysis and steam explosion for pretreating wood. Biores. Technol. 36: 77-82 https://doi.org/10.1016/0960-8524(91)90101-O
  26. Haltrich, D., Nidetzky, B. and Kulbe, K. D. 1996. Production of fungal xylanases. Biores. Technol. 58: 137-161 https://doi.org/10.1016/S0960-8524(96)00094-6
  27. Henrissat, B. and Davies, G. J. 2000. Glycoside hydro lases and glycosyltransferases. Families, modules and implications for genomics. Plant Physiol. 124: 1515-1519 https://doi.org/10.1104/pp.124.4.1515
  28. Jech, L. 2000. Solid-state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products. 11: 1-5 https://doi.org/10.1016/S0926-6690(99)00022-9
  29. Jorgensen, H., Erriksson, T. and Borjesson, J. 2003. Purification and characterisation of five cellulases and one xylanases from Penicillium brasilianum IBT 20888. Enzyme Microb. Technol. 32: 851-861 https://doi.org/10.1016/S0141-0229(03)00056-5
  30. Kelley, R. L. and Reddy, C. A. 1986. Purification and characterisation of glucose oxidase from lignolytic cultures of P chrysosporium. J.Bacteriol. 166: 269-274 https://doi.org/10.1128/jb.166.1.269-274.1986
  31. Kersten, P. J. and Kirk, T. K. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular $H_{2}O_{2}$production by P. chrysosporium. J. Bacteriol. 169: 2195-2202 https://doi.org/10.1128/jb.169.5.2195-2201.1987
  32. Krause, D.O., Denman, S. E. and Mackie, R. I. 2003. Opportunities to improve fibre degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 797: 1-31
  33. Krik, T. K. and Fenn, P. 1982. Pp 67. In: Franland, A., Hedges, L. and Swift, B. Eds. Decomposer Basidiomycetes. Cambridge University Press, Cambridge
  34. Levine, J. S. 1996. Biomass burning and global change. In: Levine, J. S. (ed) (vol. 1) Remote sensing and inventory development and biomass burning in Africa. The MIT Press, Cambridge, Massachusetts, USA, pp 35
  35. Lonsane, B. K., Saucedo-Castaneda, G. and Raimbault, M. 1992. Scale-up strategies for solid fermentation system. Process Biochem. 27: 259-273 https://doi.org/10.1016/0032-9592(92)85011-P
  36. Malherbe, S. and Cloete, T. E. 2003. Lignocellulose biodegradation: fundamentals and applications: A review. Environ. Sci. Biotechnol. 1: 105-114
  37. Mandels, M. and Sternberg, D. 1976. Recent advances in cellulose technology. Ferment. Technol. 54: 267-286
  38. McCarthy, A. J. 1987. Lignocellulose-degrading actinomycetes. 1987. FEMS Microbiol. Lett. 46: 145-163 https://doi.org/10.1111/j.1574-6968.1987.tb02456.x
  39. Miller, Jr. R. C., Gilkes, N. R. and Johnson, P. 1996. Similarities between bacterial and fungal cellulase systems. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry: Advances in Applied and Fundamental Research, pp. 531-618
  40. Montane, D., Salvado, J., Torras, C. and Farriol, X. 2002. Hightemperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22: 295-30 https://doi.org/10.1016/S0961-9534(02)00007-7
  41. Mudgett, R. E. 1986. Solid-state fermentations. Pp 66-83. In: Demain, A. L. and Solomon, N. A. Eds. Manual of Industrial Microbiology and Biotechnology. American Society of Microbiology, Washington DC, USA
  42. Nguyen, Q. A. 1993. Economic analyses of integrating a biomass-to-ethanol plant into a pulp/saw mill. Pp 321-340. In: Saddler. Eds. Bioconversion of Forest and Agricultural Plant. CAB International, UK
  43. Nieves, R. A., Ehrman, C. I. and Adney, W. S. 1998. Technical communication: survey and commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol. Biotechnol. 14: 301-304 https://doi.org/10.1023/A:1008871205580
  44. Nigam, P. and Singh, D. 1995. Processes for fermentative production of xylitol - a sugar substitute: A review: Process Biochem. 30: 117-124 https://doi.org/10.1016/0032-9592(95)95709-R
  45. Nishida, A. and Eriksson, K. E. 1987. Formation, purification, and partial characterisation of methanol oxidase, a $H_{2}O_{2}$-producing enzyme in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 9: 325-338
  46. Pal, M., Calvo, A. M., Terron, M. C. and Gonzalez, A. E. 1995. Solid-State Fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. World J Microbiol. Biotechnol. 11: 541-545 https://doi.org/10.1007/BF00286370
  47. Palmer, J. M. and Evans, C. S. 1983. Phil. Trans. R. Soc. Lend. B. 32: 293
  48. Perestelo, F., Falcon, M. A., Carnicero, A., Rodriguez, A. and Fuenrnte, G 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnology Letters. 16: 209-302
  49. Prates, J. A. M., Tarbouriech, N. and Charnock, S. J. 2001. The structure of the feruloyl esterase module of xylanases 10B from Clostridium thermocellum provides insight into substrate recognition. Structure 9: 1183-1190 https://doi.org/10.1016/S0969-2126(01)00684-0
  50. Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002a. Microbial cellulases: A review. Appl. Biochem. Microbiol. 38: 305-321 https://doi.org/10.1023/A:1016264219885
  51. Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002b. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67: 850-871 https://doi.org/10.1023/A:1019958419032
  52. Ribbons, R. W. 1987. Chemicals from lignin. Phil. Trans. R. Soc. Lond. Ser. A. 321: 485-494 https://doi.org/10.1098/rsta.1987.0026
  53. Roberto, I. C., Mussatto, S. I. and Rodrigues. R. C. L. B. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Indust. Crops Prod. 17: 171-176 https://doi.org/10.1016/S0926-6690(02)00095-X
  54. Rosales, E., Couto, S. R. and Sanroman, A 2002. New uses of food waste:application to laccase production by Trametes hisuta. Biotechnol. Lett. 24: 701-704 https://doi.org/10.1023/A:1015234100459
  55. Ruggeri, B. and Sassi, G. 2003. Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaete chrysosporium. Process Biochem. 38: 1169-1676
  56. Saul, D. J., Williams, L. C. and Grayling, R. A. 1990. Cel B,a gene coding for a bifunctional cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl. Environ. Microbiol. 56: 3117- 3124
  57. Scott, G M., Aktar, M. and Lentz, M. J. 1998. New technology for papermaking: commercial ising biopulping. Tappi J 81: 220-225
  58. Shallom, D., Shoham, Y. 2003. Microbial hemicellulases. Curr.Opin. Microbiol. 6: 219-228 https://doi.org/10.1016/S1369-5274(03)00056-0
  59. Shen, H., Gilkes, N. R. and Kilburn, D. G. 1995. Cellobiohydrolases B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas jimi Biochem. J. 311: 67-74 https://doi.org/10.1042/bj3110067
  60. Smith, J. E., Anderson, J. G and Senior, E. K. 1987. Bioprocessing of lignocelluloses. Phil. Trans. R. Soc. Lond. Ser. A. 321: 507-521 https://doi.org/10.1098/rsta.1987.0028
  61. Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64 https://doi.org/10.1080/07388550290789450
  62. Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic material from ethanol production: A review. Biores. Technol. 83: 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  63. Suurnakki, A, Tenkanen, M., Buchert, J. and Viikari, L. 1997. Hemicellulases in the Bleaching of Chemical Pulp. Pp 262-284. In: Scheper. Eds. Advances in Biochemical Engineering/ Biotechnology. Springer-Verlag Berlin, Heidelberg
  64. Vicuna, R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10: 646-655 https://doi.org/10.1016/0141-0229(88)90055-5
  65. Walton, N. J., Mayer, M. J. and Narbad, A 2003. Molecules of interest: Vanillin. Phytochemistry 63: 505-515 https://doi.org/10.1016/S0031-9422(03)00149-3
  66. Wong, K. K. Y. and Saddler, J. N. 1992a. Applications of hemicellulases in the food, feed and pulp and paper industries. Pp 127-143. In: Coughlan, P. P. and Hazlewood, G. P. Eds. Hemicellulose and Hemicellulases. Portland Press, London
  67. Wong, K. K. Y. and Saddler, J. N. 1992b. Trichoderma xylanases: their properties and applications. Pp 171-186. In: Visser Xylans and their Xylanases. Elsevier, Amsterdam
  68. Wood, T. M. 1991. Fungal cellulases. Pp 491-534. In: Haigler Biosynthesis and Biodegradation of cellulose. Macel Dekker Inc., New York
  69. Zeitch, K. J. 2000. Pp 358. In: Zeitch. Ed. The Chemistry and Technology of Furfural and Its Many By-Products. Elsevier
  70. Zimmermann, W. 1990. Degradation of lignin by bacteria. J. Biotechnol. 13: 119-130 https://doi.org/10.1016/0168-1656(90)90098-V

Cited by

  1. Metabolic Engineering and Comparative Performance Studies of Synechocystis sp. PCC 6803 Strains for Effective Utilization of Xylose vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.01484
  2. Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries vol.82, pp.3, 2017, https://doi.org/10.1111/1750-3841.13636
  3. Genome Sequences of the Lignin-Degrading Pseudomonas sp. Strain YS-1p and Rhizobium sp. Strain YS-1r Isolated from Decaying Wood vol.3, pp.2, 2015, https://doi.org/10.1128/genomeA.00019-15
  4. Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review vol.11, pp.1, 2018, https://doi.org/10.1186/s13068-018-1262-1
  5. Production, Purification, and Characterization of Thermostable Alkaline Xylanase From Anoxybacillus kamchatkensis NASTPD13 vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00065
  6. Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising pp.2251-7715, 2019, https://doi.org/10.1007/s40093-019-0243-0