References
- Akin, D. E., Rigsby, L. L. and Sethuraman, A. 1995. Alterations in the structure, chemistry and biodegradation of grass lignocellulose treated with white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl. Environ. Microbiol., 61: 1591-1598
- Arora, D. S., Chander, M. And Gill, P. K. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of wheat straw. Int. Bioterior. Biodegrad 50: 115-120 https://doi.org/10.1016/S0964-8305(02)00064-1
- Bao, W. and Renganathan, V. 1991. Triiodide reduction by cellobiose:quinone oxidoreductase of Phanerochaete chrysosporium. FEBS 279: 30-32 https://doi.org/10.1016/0014-5793(91)80242-U
- Baldrian, T. and Gabriel, J. 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220: 235-240 https://doi.org/10.1016/S0378-1097(03)00102-2
- Beauchemin, K. A., Colombatto, D., Morgavi, D. P. and Yang, W. Z. 2003. Use of exogenous fibrolytic enzymes to improve animal feed utilization by ruminants. J Anim. Sci. 81: E37-E47
- Beauchemin, K. A., Morgavi, D. P., Mcallister, T. A., Yang, W. Z. and Rode, L. M. 2001. The use of enzymes in ruminant diets. Pp 296-322. In: Wiseman, J. and Garnsworthy, P. C. Eds. Recent Advances in Animal Nutrition. Nottingham University Press
- Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fibre digestibility and growth rate of steers fed dry forages. Can. J Anim. Sci. 75: 641-644 https://doi.org/10.4141/cjas95-096
- Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
- Betts, W. B., Dart, R. K., Ball, A. S. and Pedlar, S. L. 1991. Biosynthesis and Structure of lignocellulose. Pp 139-155. In: Betts. Ed. Biodegradation: Natural and Synthetic Materials. SpringerVerlag, Berlin, Germany
- Bhat, M. K. 2000. Research review paper: Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383 https://doi.org/10.1016/S0734-9750(00)00041-0
- Bosco, F., Ruggeri, B. and Sassi, G 1999. Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem. Eng. Sci. 54: 3163-3169 https://doi.org/10.1016/S0009-2509(98)00365-0
- Barbonnais, R. and Paice, M. G. 1988. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju Biochem. J 255: 445-450 https://doi.org/10.1042/bj2550445
-
Call, H. P. and Muck, I. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systerns (
$Lignozyme^{\circledR}$ -process). J. Biotechnol. 53: 163-202 https://doi.org/10.1016/S0168-1656(97)01683-0 - Campbell, C. J. and Laherrere, J. H. 1998. The end of cheap oil. Sci. Am. 3: 78-83
- Canel, E. and Moo-Young, M. 1980. Solid state fermentation systems. Process Biochem. 15: 24-28
- Chahal, D. S. 1992. Bioconversions of polysaccharides of ligno- cellulose and simultaneous degradation of lignin. Pp 83-93. In: Kennedy et al. Eds. Lignocellulosics: Science, Technology, Development and Use. Ellis Horwood Limited, England
- Chahal, P. S., Chahal, D. S. and Le, G. B. B. 1996. Production of cellulose in solid - state fermentation with Trichoderma reesei MCG 80 on wheat straw. Appl. Biochem. Biotechnol. 57/58: 433-442 https://doi.org/10.1007/BF02941724
- Christopherson, C., Anderson, E., Jokobsen, T. S. and Wagner, P. 1997. Xylanases in wheat separation. Starch. 49: 5-12 https://doi.org/10.1002/star.19970490104
- Coombs, J. 1987. EEC resources and strategies. Phil. Trans. R. Soc. London. Ser. A. 321: 405-422 https://doi.org/10.1098/rsta.1987.0019
- Esterbauerm, H., Steiner, W. and Labudova, I. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol. 36: 51-65 https://doi.org/10.1016/0960-8524(91)90099-6
- Eveleigh, D. E. 1987. Cellulase a perspective. Phil. Trans. R. Soc.Lond. Ser. A. 321: 435-447 https://doi.org/10.1098/rsta.1987.0021
- Falcon, M. A., Rodriguez, A. and Carnicero, A. 1995. Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol. Biochem. 27: 121-126 https://doi.org/10.1016/0038-0717(94)00174-Y
- Gold, M. H. and Alic, M. 1993. Molecular biology of the lignindegrading basidiomycetes Phanerochaete chrysosporium. Microbiol. Rev. 57: 605-622
- Goyal, A., Ghosh, B. and Eveleigh, D. 1991. Characterisation of fungal cellulases. Biores. Technol. 36: 37-50 https://doi.org/10.1016/0960-8524(91)90098-5
- Grethlein, H. E. and Converse, A. O. 1991. Common Aspects of acid prehydrolysis and steam explosion for pretreating wood. Biores. Technol. 36: 77-82 https://doi.org/10.1016/0960-8524(91)90101-O
- Haltrich, D., Nidetzky, B. and Kulbe, K. D. 1996. Production of fungal xylanases. Biores. Technol. 58: 137-161 https://doi.org/10.1016/S0960-8524(96)00094-6
- Henrissat, B. and Davies, G. J. 2000. Glycoside hydro lases and glycosyltransferases. Families, modules and implications for genomics. Plant Physiol. 124: 1515-1519 https://doi.org/10.1104/pp.124.4.1515
- Jech, L. 2000. Solid-state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products. 11: 1-5 https://doi.org/10.1016/S0926-6690(99)00022-9
- Jorgensen, H., Erriksson, T. and Borjesson, J. 2003. Purification and characterisation of five cellulases and one xylanases from Penicillium brasilianum IBT 20888. Enzyme Microb. Technol. 32: 851-861 https://doi.org/10.1016/S0141-0229(03)00056-5
- Kelley, R. L. and Reddy, C. A. 1986. Purification and characterisation of glucose oxidase from lignolytic cultures of P chrysosporium. J.Bacteriol. 166: 269-274 https://doi.org/10.1128/jb.166.1.269-274.1986
-
Kersten, P. J. and Kirk, T. K. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular
$H_{2}O_{2}$ production by P. chrysosporium. J. Bacteriol. 169: 2195-2202 https://doi.org/10.1128/jb.169.5.2195-2201.1987 - Krause, D.O., Denman, S. E. and Mackie, R. I. 2003. Opportunities to improve fibre degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 797: 1-31
- Krik, T. K. and Fenn, P. 1982. Pp 67. In: Franland, A., Hedges, L. and Swift, B. Eds. Decomposer Basidiomycetes. Cambridge University Press, Cambridge
- Levine, J. S. 1996. Biomass burning and global change. In: Levine, J. S. (ed) (vol. 1) Remote sensing and inventory development and biomass burning in Africa. The MIT Press, Cambridge, Massachusetts, USA, pp 35
- Lonsane, B. K., Saucedo-Castaneda, G. and Raimbault, M. 1992. Scale-up strategies for solid fermentation system. Process Biochem. 27: 259-273 https://doi.org/10.1016/0032-9592(92)85011-P
- Malherbe, S. and Cloete, T. E. 2003. Lignocellulose biodegradation: fundamentals and applications: A review. Environ. Sci. Biotechnol. 1: 105-114
- Mandels, M. and Sternberg, D. 1976. Recent advances in cellulose technology. Ferment. Technol. 54: 267-286
- McCarthy, A. J. 1987. Lignocellulose-degrading actinomycetes. 1987. FEMS Microbiol. Lett. 46: 145-163 https://doi.org/10.1111/j.1574-6968.1987.tb02456.x
- Miller, Jr. R. C., Gilkes, N. R. and Johnson, P. 1996. Similarities between bacterial and fungal cellulase systems. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry: Advances in Applied and Fundamental Research, pp. 531-618
- Montane, D., Salvado, J., Torras, C. and Farriol, X. 2002. Hightemperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22: 295-30 https://doi.org/10.1016/S0961-9534(02)00007-7
- Mudgett, R. E. 1986. Solid-state fermentations. Pp 66-83. In: Demain, A. L. and Solomon, N. A. Eds. Manual of Industrial Microbiology and Biotechnology. American Society of Microbiology, Washington DC, USA
- Nguyen, Q. A. 1993. Economic analyses of integrating a biomass-to-ethanol plant into a pulp/saw mill. Pp 321-340. In: Saddler. Eds. Bioconversion of Forest and Agricultural Plant. CAB International, UK
- Nieves, R. A., Ehrman, C. I. and Adney, W. S. 1998. Technical communication: survey and commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol. Biotechnol. 14: 301-304 https://doi.org/10.1023/A:1008871205580
- Nigam, P. and Singh, D. 1995. Processes for fermentative production of xylitol - a sugar substitute: A review: Process Biochem. 30: 117-124 https://doi.org/10.1016/0032-9592(95)95709-R
-
Nishida, A. and Eriksson, K. E. 1987. Formation, purification, and partial characterisation of methanol oxidase, a
$H_{2}O_{2}$ -producing enzyme in Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 9: 325-338 - Pal, M., Calvo, A. M., Terron, M. C. and Gonzalez, A. E. 1995. Solid-State Fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. World J Microbiol. Biotechnol. 11: 541-545 https://doi.org/10.1007/BF00286370
- Palmer, J. M. and Evans, C. S. 1983. Phil. Trans. R. Soc. Lend. B. 32: 293
- Perestelo, F., Falcon, M. A., Carnicero, A., Rodriguez, A. and Fuenrnte, G 1994. Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnology Letters. 16: 209-302
- Prates, J. A. M., Tarbouriech, N. and Charnock, S. J. 2001. The structure of the feruloyl esterase module of xylanases 10B from Clostridium thermocellum provides insight into substrate recognition. Structure 9: 1183-1190 https://doi.org/10.1016/S0969-2126(01)00684-0
- Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002a. Microbial cellulases: A review. Appl. Biochem. Microbiol. 38: 305-321 https://doi.org/10.1023/A:1016264219885
- Rabinovich, M. L., Melnik, M. S. and Bolobova, A. V. 2002b. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67: 850-871 https://doi.org/10.1023/A:1019958419032
- Ribbons, R. W. 1987. Chemicals from lignin. Phil. Trans. R. Soc. Lond. Ser. A. 321: 485-494 https://doi.org/10.1098/rsta.1987.0026
- Roberto, I. C., Mussatto, S. I. and Rodrigues. R. C. L. B. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Indust. Crops Prod. 17: 171-176 https://doi.org/10.1016/S0926-6690(02)00095-X
- Rosales, E., Couto, S. R. and Sanroman, A 2002. New uses of food waste:application to laccase production by Trametes hisuta. Biotechnol. Lett. 24: 701-704 https://doi.org/10.1023/A:1015234100459
- Ruggeri, B. and Sassi, G. 2003. Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaete chrysosporium. Process Biochem. 38: 1169-1676
- Saul, D. J., Williams, L. C. and Grayling, R. A. 1990. Cel B,a gene coding for a bifunctional cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl. Environ. Microbiol. 56: 3117- 3124
- Scott, G M., Aktar, M. and Lentz, M. J. 1998. New technology for papermaking: commercial ising biopulping. Tappi J 81: 220-225
- Shallom, D., Shoham, Y. 2003. Microbial hemicellulases. Curr.Opin. Microbiol. 6: 219-228 https://doi.org/10.1016/S1369-5274(03)00056-0
- Shen, H., Gilkes, N. R. and Kilburn, D. G. 1995. Cellobiohydrolases B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas jimi Biochem. J. 311: 67-74 https://doi.org/10.1042/bj3110067
- Smith, J. E., Anderson, J. G and Senior, E. K. 1987. Bioprocessing of lignocelluloses. Phil. Trans. R. Soc. Lond. Ser. A. 321: 507-521 https://doi.org/10.1098/rsta.1987.0028
- Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64 https://doi.org/10.1080/07388550290789450
- Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic material from ethanol production: A review. Biores. Technol. 83: 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
- Suurnakki, A, Tenkanen, M., Buchert, J. and Viikari, L. 1997. Hemicellulases in the Bleaching of Chemical Pulp. Pp 262-284. In: Scheper. Eds. Advances in Biochemical Engineering/ Biotechnology. Springer-Verlag Berlin, Heidelberg
- Vicuna, R. 1988. Bacterial degradation of lignin. Enzyme Microb. Technol. 10: 646-655 https://doi.org/10.1016/0141-0229(88)90055-5
- Walton, N. J., Mayer, M. J. and Narbad, A 2003. Molecules of interest: Vanillin. Phytochemistry 63: 505-515 https://doi.org/10.1016/S0031-9422(03)00149-3
- Wong, K. K. Y. and Saddler, J. N. 1992a. Applications of hemicellulases in the food, feed and pulp and paper industries. Pp 127-143. In: Coughlan, P. P. and Hazlewood, G. P. Eds. Hemicellulose and Hemicellulases. Portland Press, London
- Wong, K. K. Y. and Saddler, J. N. 1992b. Trichoderma xylanases: their properties and applications. Pp 171-186. In: Visser Xylans and their Xylanases. Elsevier, Amsterdam
- Wood, T. M. 1991. Fungal cellulases. Pp 491-534. In: Haigler Biosynthesis and Biodegradation of cellulose. Macel Dekker Inc., New York
- Zeitch, K. J. 2000. Pp 358. In: Zeitch. Ed. The Chemistry and Technology of Furfural and Its Many By-Products. Elsevier
- Zimmermann, W. 1990. Degradation of lignin by bacteria. J. Biotechnol. 13: 119-130 https://doi.org/10.1016/0168-1656(90)90098-V
Cited by
- Metabolic Engineering and Comparative Performance Studies of Synechocystis sp. PCC 6803 Strains for Effective Utilization of Xylose vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.01484
- Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries vol.82, pp.3, 2017, https://doi.org/10.1111/1750-3841.13636
- Genome Sequences of the Lignin-Degrading Pseudomonas sp. Strain YS-1p and Rhizobium sp. Strain YS-1r Isolated from Decaying Wood vol.3, pp.2, 2015, https://doi.org/10.1128/genomeA.00019-15
- Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review vol.11, pp.1, 2018, https://doi.org/10.1186/s13068-018-1262-1
- Production, Purification, and Characterization of Thermostable Alkaline Xylanase From Anoxybacillus kamchatkensis NASTPD13 vol.6, pp.2296-4185, 2018, https://doi.org/10.3389/fbioe.2018.00065
- Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising pp.2251-7715, 2019, https://doi.org/10.1007/s40093-019-0243-0