Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kang, Tae-Hyoung (Department of Industrial Engineering, Chonnam National University) ;
  • Lee, Kum-Il (Department of Industrial Engineering, Chonnam National University) ;
  • Sohn, Ok-Jae (Laboratory of BioProcess Technology, Chonnam National University) ;
  • Kim, Sun-Yong (Laboratory of BioProcess Technology, Chonnam National University) ;
  • Chung, Sang-Wook (Department of Industrial Engineering, Chonnam National University)
  • Published : 2006.10.30

Abstract

2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Keywords

References

  1. Sonnleitner, B. (2000) Instrumentation of biotechnologi-cal processes. pp. 1-64. In: K. Schugerl (ed.). Advances in Biochemical Engineering and Biotechnology. Springer, Berlin, Germany
  2. Harms, P., Y. Rostov, and G. Rao (2002) Bioprocess monitoring. Curr. Opin. Biotechnol. 13: 124-127 https://doi.org/10.1016/S0958-1669(02)00295-1
  3. Hantelmann, K., M. Kollecker, D. Hull, B. Hitzmann, and T. Scheper (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J. Biotechnol. 121: 410-417 https://doi.org/10.1016/j.jbiotec.2005.07.016
  4. Schugerl, K., C. Lindemann, S. Marose, and T. Scheper (1998) Two-dimensional fluorescence spectroscopy for on-line bioprocess monitoring. pp. 1-27. Course Material for the Bioprocess Engineering Course. Supertar, Island of Brae, Croatia
  5. Mukherjee, J., C. Lindermann, and T. Scheper (1999) Fluorescence monitoring during cultivation of Enterobac-ter aerogenes at different oxygen levels. Appl. Microbiol. Biotechnol. 52: 489-494 https://doi.org/10.1007/s002530051550
  6. Boehl, D., D. Solle, B. Hitzmann, and T. Scheper (2003) Chemometric modelling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J. Biotechnol. 105: 179-188 https://doi.org/10.1016/S0168-1656(03)00189-5
  7. Tartakovsky, B., M. Scheintuch, J.-M. Hilmer, and T. Scheper (1996) Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol. Prog. 12: 126-131 https://doi.org/10.1021/bp950045h
  8. Marose, S., C. Lindemann, and T. Scheper (1998) Two-dimensional fluorescence spectroscopy: a new tool for online bioprocess monitoring. Biotechnol. Prog. 14: 63-74 https://doi.org/10.1021/bp970124o
  9. Wolf, G., J. S. Almeida, C. Pinheiro, V. Correia, C. Rodri-gues, M. A. M. Reis, and J. G. Crespo (2001) Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes. Biotechnol. Bioeng. 72: 297-306 https://doi.org/10.1002/1097-0290(20010205)72:3<297::AID-BIT6>3.0.CO;2-B
  10. Skibsted, E., C. Lindemann, C. Roca, and L. Olsson (2001) On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J. Biotechnol. 88: 47-57 https://doi.org/10.1016/S0168-1656(01)00257-7
  11. Cimander, C. and C. F. Mandenius (2002) Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J. Chem. Technol. Biotechnol. 77: 1157-1168 https://doi.org/10.1002/jctb.691
  12. Hisiger, S. and M. Jolicoeur (2005) A multiwavelength fluorescence probe: is one probe capable for on-line monitoring of recombinant protein production and biomass activity? J. Biotechnol. 117: 325-336 https://doi.org/10.1016/j.jbiotec.2005.03.004
  13. Eliasson Lantz, A., P. forgensen, E. Poulsen, C. Lindemann, and L. Olsson (2006) Determination of cell mass and polymyxin using multi-wavelength fluorescence. J. Biotechnol. 121: 544-554 https://doi.org/10.1016/j.jbiotec.2005.08.007
  14. Haack, M. B., A. Eliasson, and L. Olsson (2004) On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J. Biotechnol. 114: 199-208 https://doi.org/10.1016/j.jbiotec.2004.05.009
  15. Jolliffe, I. T. (1986) Principal Component Analysis. Springer, New York, NY, USA
  16. Bro, R. (2003) Multivariate calibration. What is in chemometrics for the analytical chemist? Anal. Chim. Acta 500: 185-194 https://doi.org/10.1016/S0003-2670(03)00681-0
  17. Dufour, E. and A. Riaublanc (1997) Potentiality of spectroscopic methods for the characterization of dairy products. I. Front-face fluorescence study of raw, heated and homogenized milks. Lait 11: 657-670
  18. Guimet, F, J. Ferre, R. Boque, and F. X. Rius (2004) Application of unfold principal component analysis and parallel factor analysis to the extrapolatory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy. Anal. Chim. Acta 515: 75-85 https://doi.org/10.1016/j.aca.2004.01.008
  19. Tartakovsky, B., L. A. Lishman, and R. L. Legge (1996) Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics. Water Res. 30:2941-2948 https://doi.org/10.1016/S0043-1354(96)00196-0
  20. Dow, L. K., S. Kalelkar, and E. R. Dow (2004) Self-organizing maps for the analysis of NMR spectra. BioSilico 2: 157-163
  21. Kolehmainen, M., P. Ronkko, and O. Raatikainen (2003) Monitoring of yeast fermentation by ion mobility spectrometry measurement and data visualization with self-organizing maps. Anal. Chim. Acta 484: 93-100 https://doi.org/10.1016/S0003-2670(03)00307-6
  22. Debeljak, Z., M. Strapac, and M. Medic-Saric (2001) Application of self-organizing maps for the classification of chromatographic systems and prediction of values of chro-matographic quantities. J. Chromatogr. A 925: 31-40 https://doi.org/10.1016/S0021-9673(01)01010-X
  23. Rhee, J. I., K.-I. Lee, C.-K. Kim, Y.-S. Yim, S.-W. Chung, J. Wei, and K.-H. Bellgardt (2005) Classification of two-dimensional fluorescence spectra using self-organizing maps. Biochem. Eng. J. 22: 135-144 https://doi.org/10.1016/j.bej.2004.09.008
  24. Chung, S.-Y., K.-H. Seo, and J. I. Rhee (2005) Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem. 40: 385-394 https://doi.org/10.1016/j.procbio.2004.01.024
  25. Shimizu, H., K. Araki, S. Shioya, and K.-I. Suga (1991) Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol. Bioeng. 38: 196-205 https://doi.org/10.1002/bit.260380212
  26. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27: 502-522 https://doi.org/10.1016/0003-2697(69)90064-5
  27. Teshima, N., H. Katsumate, M. Kurihara, T. Sakai, and T. Kawashima (1999) Flow-injection determination of copper (II) based on its catalysis on the redox reaction of cysteine with iron (III) in the presence of 1,10-phenanthroline. Talanta 50: 41-47 https://doi.org/10.1016/S0039-9140(99)00108-3
  28. Geladi, P., B. Sthson, J. Nystrom, T. Lillhinga, T. Lestander, and J. Burger (2004) Chemometrics in Spectroscopy. Spectrochim. Acta Part B 59: 1347-1357
  29. Lee, K.-I., Y.-S. Yim, S.-W. Chung, J. Wei, and J. I. Rhee (2005) Application of artificial neural networks to the analysis of two-dimensional fluorescence spectra in recombinant E. coli fermentation processes. J. Chem. Technol. Biotechnol. 80: 1036-1045 https://doi.org/10.1002/jctb.1281
  30. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm hemolymph. Biotechnol. Bioprocess Eng. 10: 353-356 https://doi.org/10.1007/BF02931854
  31. Rhee, J. I., A. Ritzka, and T. Scheper (2004) On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems. Biotechnol. Bioprocess Eng. 9: 156-165 https://doi.org/10.1007/BF02942286
  32. Hur, W and Y.-K. Chung (2005) On-line monitoring of IPTG induction for recombinant protein production using an automatic pH control signal. Biotechnol. Bioprocess Eng. 10: 304-308 https://doi.org/10.1007/BF02931846
  33. Munoz de la Pena, A., N. Mora Diez, D. B. Gil, A. C. Olivieri, and G. M. Escandar (2006) Simultaneous determination of flufenamic and meclofenamic acids in human urine samples by second-order multivariate parallel factor analysis (PARAFAC) calibration of micellar-enhanced excitation-emission fluorescence data. Anal. Chim. Acta 569: 250-259 https://doi.org/10.1016/j.aca.2006.03.077