Optimization of ${\gamma}-Polyglutamic$ Acid Production by Bacillus subtilis ZJU-7 Using a Surface-response Methodology

  • Shi, Feng (Institute of Bioengineering, Department of Chemical Engineering and Bioengineering, Zhejiang University) ;
  • Xu, Zhinan (Institute of Bioengineering, Department of Chemical Engineering and Bioengineering, Zhejiang University) ;
  • Cen, Peilin (Institute of Bioengineering, Department of Chemical Engineering and Bioengineering, Zhejiang University)
  • 발행 : 2006.06.30

초록

The components of the media used to elicit the biosynthesis of $poly-{\gamma}-glutamic$ acid $({\gamma}-PGA)$ by Bacillus subtilis ZJU-7 were investigated, particularly the carbon and nitrogen sources Of the 7 carbon sources investigated, sucrose induced the highest rate of ${\gamma}-PGA$ productivity; among the nitrogen sources, tryptone had the best effect for ${\gamma}-PGA$ production. A $2^{6-2}$ fractional factorial design was used to screen factors that influence ${\gamma}-PGA$ production significantly, and a central composite design was finally adopted to formulate the optimal medium. ${\gamma}-PGA$ productivity improved approximately 2-fold when the optimal medium was used compared with the original nonoptimized medium, and volumetric productivity reached a maximum of 58.2 g/L after a 24-h cultivation period.

키워드

참고문헌

  1. Sekine, T., T. Nakamura, Y. Shimizu, H. Ueda, K. Matsumoto, Y. Takimoto, and T. Kiyotani (2000) A new type of surgical adhesive made of porcine collagen and poly glutamic acid. J. Biomed. Mater. Res. 35: 305-310
  2. Li, C., J. E. Price, L. Milis, N. R. Hunter, S. Ke, D. F. Yu, C. Charnsangavej, and S. Wallace (1999) Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin. Cancer Res. 5: 891-897
  3. Kadowaki, M. and T. Noguchi (2001) Natto mucilage containing poly-$\gamma$-glutamic acid increase soluble calcium in the rat small intestine. Biosci. Biotechnol. Biochem. 65: 516-521 https://doi.org/10.1271/bbb.65.516
  4. Choi, H. J. and M. Kunioka (1995) Preparation conditions and swelling equilibria of hydrogel prepared by $\gamma$- irradiation from microbial poly(${\gamma}$-glutamic acid). Radiat. Phys. Chem. 46: 175-179 https://doi.org/10.1016/0969-806X(95)00009-M
  5. McLean, R. J., D. Beauchemin, L. Clapham, and T. J. Beveridge (1990) Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl. Environ. Microbiol. 56: 3671-3677
  6. Ivanovics, G. and V. Bruckner (1937) Chemische und immunologische Studien über den Mechanismus der Milzbrandinfektion und Immunität; die chemische Struktur der Kapselsubstanz des Milzbrandbazillus und der serologisch identischen spezifischen Substanz des Bacillus mesentericus. Z Immunitatsforsch Exp Ther 90: 304-318
  7. Thorne, C. B. and C. G. Leonard (1958) Isolation of Dand L-glutamyl polypeptides from culture filtrates of Bacillus subtilis. J. Biol. Chem. 233: 1109-1112
  8. Ward, R. M., R. F. Anderson, and F. K. Dean (1963) Polyglutamic acid production by Bacillus subtilis NRRL B- 2612 grown on wheat gluten. Biotechnol. Bioeng. 5: 41-48 https://doi.org/10.1002/bit.260050107
  9. Aumayr, A., T. Hara, and S. Ueda (1981) Transformation of Bacillus subtilis in polyglutamate production by eoxyribonucleic acid from B. natto. J. Gen. Appl. Microbiol. 27: 115-123 https://doi.org/10.2323/jgam.27.115
  10. Kambourova, M., M. Tangney, and F. G. Priest (2001) Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl. Environ. Microbiol. 67: 1004-1007 https://doi.org/10.1128/AEM.67.2.1004-1007.2001
  11. Feng, S., X. Zhinan, and C. Peilin, Efficient production of poly-$\gamma$-glutamic acid by a new strain Bacillus Subtilis ZJU- 7. Appl. Biochem. Biotechnol. In press
  12. Chen, H. C. (1996) Optimizing the concentrations of carbon, nitrogen, and phosphorus in a citric acid fermentation with response surface method. Food Biotechnol. 10: 13-27 https://doi.org/10.1080/08905439609549898
  13. Rao, P. V., K. Jayaraman, and C. M. Lakshmanan (1993) Production of lipase by Candida rugosa in solid-state fermentation. 2: Medium optimization and effect of aeration. Process Biochem. 28: 391-395 https://doi.org/10.1016/0032-9592(93)80026-D
  14. Harris, P. L., S. L. Cuppett, and L. B. Bullerman (1990) Optimization of lipase synthesis by Pseudomonas fluorescens by response surface methodology. J. Food. Protect 53: 481-483 https://doi.org/10.4315/0362-028X-53.6.481
  15. Bazaraa. W. A. and E. E. Hassan (1996) Response surface optimization for the continuous glucose isomerization process. J. Ind. Microbiol. Biotechnol. 17: 100-103
  16. Maddox, I. S. and S. H. Richert (1977) Use of response surface methodology for the rapid optimization of microbiological media. J. Appl. Bacteriol. 43: 197-204 https://doi.org/10.1111/j.1365-2672.1977.tb00743.x
  17. Goto, A. and M. Kunioka (1992) Biosynthesis and hydrolysis of poly($\gamma$-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031
  18. Hansen, B. M. and N. B. Hendriksen (2001) Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189 https://doi.org/10.1128/AEM.67.1.185-189.2001
  19. Adinarayana, K., P. Ellaiah, B. Srinivasulu, R. Bhavani Devi, and G. Adinarayana (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem. 38: 1565-1572 https://doi.org/10.1016/S0032-9592(03)00057-8
  20. Strobel, R. J. and G. R. Sullivan (1999) Experimental design for improvement of fermentation. pp. 80-93. In: A. L. Demain and J. E. Davies (eds.). Manual of Industrial Microbiology and Biotechnology. 2nd ed. ASM Press, Washington, DC, USA
  21. Kennedy, M. and D. Krouse (1999) Strategies for improving fermentation medium performance: a review. J. Ind. Microbiol. Biotechnol. 23: 456-475 https://doi.org/10.1038/sj.jim.2900755
  22. Ashiuchi, M., K. Tani, K. Soda, and H. Misono (1998) Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-${\gamma}$-glutamate. J. Biochem. 123: 1156-1163 https://doi.org/10.1093/oxfordjournals.jbchem.a022055
  23. Ogawa, Y., F. Yamaguchi, K. Yuasa, and Y. Tahara (1997) Efficient production of $\gamma$-poly glutamic acid by Bacillus licheniformis (natto) in jar fermenters. Biosci. Biotechnol. Biochem. 61: 1684-1687 https://doi.org/10.1271/bbb.61.1684
  24. Kubota, H. (1993) production of poly($\gamma$-glutamic acid) by Bacillus subtilis F 201. Biosci. Biotechnol. Biochem. 57: 1212-1213 https://doi.org/10.1271/bbb.57.1212