Toxicoproteomics in the Study of Aromatic Hydrocarbon Toxicity

  • Cho, Chang-Won (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Chan-Wha (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.06.30

Abstract

The aromatic hydrocarbons (AHs), which include benzene, polycyclic aromatic hydrocarbons, and dioxin, are important chemical and environmental contaminants in industry that usually cause various diseases. Over the years, numerous studies have described and evaluated the adverse health effects induced by AHs. Currently, "Omics" technologies, transcriptomics and proteomics, have been applied in AH toxicity studies. Proteomics has been used to identify molecular mechanisms and biomarkers associated with global chemical toxicity. It could enhance our ability to characterize chemical-induced toxicities and to identify noninvasive biomarkers. The proteomic approach (e.g. 2-dimensional electrophoresis [2-DE]), can be used to observe changes in protein expression during chemical exposure with high sensitivity and specificity. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization-quadrupole (ESI-Q)-TOF MS/MS are recognized as the most important protein identification tools. This review describes proteomic technologies and their application in the proteomic analysis of AH toxicity.

Keywords

References

  1. Anderson, N. L. and N. G. Anderson (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19: 1853-1861 https://doi.org/10.1002/elps.1150191103
  2. Lee, B. H. and T. Nagamune (2004) Protein microarrays and their applications. Biotechnol. Bioprocess Eng. 9: 69- 75 https://doi.org/10.1007/BF02932987
  3. Joo, W. A., D. Y. Lee, and C. W. Kim (2003) Development of an effective sample preparation method for the proteome analysis of body fluids using 2-D gel electrophoresis. Biosci. Biotechnol. Biochem. 67: 1574-1577 https://doi.org/10.1271/bbb.67.1574
  4. Banks, R. E., M. J. Dunn, D. F. Hochstrasser, J. C. Sanchez, W. Blackstock, D. J. Pappin, and P. J. Selby (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet 356: 1749-1756 https://doi.org/10.1016/S0140-6736(00)03214-1
  5. Kennedy, S. (2002) The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis. Biomarkers 7: 269-290 https://doi.org/10.1080/13547500210127318
  6. Petricoin, E. F., V. Rajapaske, E. H. Herman, A. M. Arekani, S. Ross, D. Johann, A. Knapton, J. Zhang, B. A. Hitt, T. P. Conrads, T. D. Veenstra, L. A. Liotta, and F. D. Sistare (2004) Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection. Toxicol. Pathol. 32 Suppl 1: 122-130
  7. Wetmore, B. A. and B. A. Merrick (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol. Pathol. 32: 619-642 https://doi.org/10.1080/01926230490518244
  8. Heijne, W. H., R. H. Stierum, M. Slijper, P. J. van Bladeren, and B. van Ommen (2003) Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochem. Pharmacol. 65: 857- 875 https://doi.org/10.1016/S0006-2952(02)01613-1
  9. Nuwaysir, E. F., M. Bittner, J. Trent, J. C. Barrett, and C. A. Afshari (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog. 24: 153-159 https://doi.org/10.1002/(SICI)1098-2744(199903)24:3<153::AID-MC1>3.0.CO;2-P
  10. Faiola, B., E. S. Fuller, V. A. Wong, and L. Recio (2004) Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene. Mutat. Res. 549: 195-212 https://doi.org/10.1016/j.mrfmmm.2003.12.022
  11. Waring, J. F., R. Ciurlionis, R. A. Jolly, M. Heindel, and R. G. Ulrich (2001) Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol. Lett. 120: 359-368 https://doi.org/10.1016/S0378-4274(01)00267-3
  12. Hamadeh, H. K., P. R. Bushel, S. Jayadev, K. Martin, O. DiSorbo, S. Sieber, L. Bennett, R. Tennant, R. Stoll, J. C. Barrett, K. Blanchard, R. S. Paules, and C. A. Afshari (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol. Sci. 67: 219-231 https://doi.org/10.1093/toxsci/67.2.219
  13. Waters, M. D., K. Olden, and R. W. Tennant (2003) Toxicogenomic approach for assessing toxicant-related disease. Mutat. Res. 544: 415-424 https://doi.org/10.1016/j.mrrev.2003.06.014
  14. Anderson, L. and J. Seilhamer (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18: 533-537 https://doi.org/10.1002/elps.1150180333
  15. Bjellqvist, B., K. Ek, P. G. Righetti, E. Gianazza, A. Gorg, R. Westermeier, and W. Postel (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology, and some applications. J. Biochem. Biophys. Methods 6: 317- 339 https://doi.org/10.1016/0165-022X(82)90013-6
  16. Aebersold, R. and M. Mann (2003) Mass spectrometrybased proteomics. Nature 422: 198-207 https://doi.org/10.1038/nature01511
  17. Kim, C. Y., H. J. Park, and E. S. Kim (2005) Proteomicsdriven identification of putative AfsR2-target proteins stimulating antibiotic biosyntehsis in Streptomyces lividans. Biotechnol. Bioprocess Eng. 10: 248-253 https://doi.org/10.1007/BF02932021
  18. Biemann, K. (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 193: 455-479 https://doi.org/10.1016/0076-6879(90)93433-L
  19. Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994-999 https://doi.org/10.1038/13690
  20. Tian, Q., S. B. Stepaniants, M. Mao, L. Weng, M. C. Feetham, M. J. Doyle, E. C. Yi, H. Dai, V. Thorsson, J. Eng, D. Goodlett, J. P. Berger, B. Gunter, P. S. Linseley, R. B. Stoughton, R. Aebersold, S. J. Collins, W. A. Hanlon, and L. E. Hood (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol. Cell. Proteomics 3: 960-969 https://doi.org/10.1074/mcp.M400055-MCP200
  21. Yan, W., H. Lee, E. C. Yi, D. Reiss, P. Shannon, B. K. Kwieciszewski, C. Coito, X. J. Li, A. Keller, J. Eng, T. Galitski, D. R. Goodlett, R. Aebersold, and M. G. Katze (2004) System-based proteomic analysis of the interferon response in human liver cells. Genome Biol. 5: R54 https://doi.org/10.1186/gb-2004-5-8-r54
  22. Washburn, M. P., D. Wolters, and J. R. Yates, 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19: 242-247 https://doi.org/10.1038/85686
  23. Cagney, G., S. Park, C. Chung, B. Tong, C. O'Dushlaine, D. C. Shields, and A. Emili (2005) Human tissue profiling with multidimensional protein identification technology. J. Proteome Res. 4: 1757-1767 https://doi.org/10.1021/pr0500354
  24. Paustenbach, D. J., R. D. Bass, and P. Price (1993) Benzene toxicity and risk assessment, 1972-1992: implications for future regulation. Environ. Health Perspect. 101 Suppl 6: 177-200 https://doi.org/10.2307/3431722
  25. Duarte-Davidson, R., C. Courage, L. Rushton, and L. Levy (2001) Benzene in the environment: an assessment of the potential risks to the health of the population. Occup. Environ. Med. 58: 2-13 https://doi.org/10.1136/oem.58.1.2
  26. Troester, M. A., A. B. Lindstrom, L. L. Kupper, S. Waidyanatha, and S. M. Rappaport (2000) Stability of hemoglobin and albumin adducts of benzene oxide and 1,4- benzoquinone after administration of benzene to F344 rats. Toxicol. Sci. 54: 88-94 https://doi.org/10.1093/toxsci/54.1.88
  27. Mozdarani, H. and S. Kamali (1998) Antigenotoxic effects of cimetidine against benzene induced micronuclei in mouse bone marrow erythrocytes. Toxicol. Lett. 99: 53-61 https://doi.org/10.1016/S0378-4274(98)00138-6
  28. Qu, Q., A. A. Melikian, G. Li, R. Shore, L. Chen, B. Cohen, S. Yin, M. R. Kagan, H. Li, M. Meng, X. Jin, W. Winnik, Y. Li, R. Mu, and K. Li (2000) Validation of biomarkers in humans exposed to benzene: urine metabolites. Am. J. Ind. Med. 37: 522-531 https://doi.org/10.1002/(SICI)1097-0274(200005)37:5<522::AID-AJIM8>3.0.CO;2-G
  29. Yoon, B. I., Y. Hirabayashi, Y. Kawasaki, Y. Kodama, T. Kaneko, D. Y. Kim, and T. Inoue (2001) Mechanism of action of benzene toxicity: cell cycle suppression in hemopoietic progenitor cells (CFU-GM). Exp. Hematol. 29: 278-285 https://doi.org/10.1016/S0301-472X(00)00671-8
  30. Yeowell-O'Connell, K., N. Rothman, M. T. Smith, R. B. Hayes, G. Li, S. Waidyanatha, M. Dosemeci, L. Zhang, S. Yin, N. Titenko-Holland, and S. M. Rappaport (1998) Hemoglobin and albumin adducts of benzene oxide among workers exposed to high levels of benzene. Carcinogenesis 19: 1565-1571 https://doi.org/10.1093/carcin/19.9.1565
  31. Pezzagno, G., L. Maestri, and M. L. Fiorentino (1999) Trans,trans-muconic acid, a biological indicator to low levels of environmental benzene: some aspects of its specificity. Am. J. Ind. Med. 35: 511-518 https://doi.org/10.1002/(SICI)1097-0274(199905)35:5<511::AID-AJIM8>3.0.CO;2-Y
  32. Dor, F., W. Dab, P. Empereur-Bissonnet, and D. Zmirou (1999) Validity of biomarkers in environmental health studies: the case of PAHs and benzene. Crit. Rev. Toxicol. 29: 129-168 https://doi.org/10.1080/10408449991349195
  33. Joo, W. A., M. J. Kang, W. K. Son, H. J. Lee, D. Y. Lee, E. Lee, and C. W. Kim (2003) Monitoring protein expression by proteomics: human plasma exposed to benzene. Proteomics 3: 2402-2411 https://doi.org/10.1002/pmic.200300616
  34. Kennedy, S. (2001) Proteomic profiling from human samples: the body fluid alternative. Toxicol. Lett. 120: 379-384 https://doi.org/10.1016/S0378-4274(01)00269-7
  35. Anderson, N. L. and N. G. Anderson (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1: 845-867 https://doi.org/10.1074/mcp.R200007-MCP200
  36. Andreoli, C., P. Leopardi, and R. Crebelli (1997) Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat. Res. 377: 95-104 https://doi.org/10.1016/S0027-5107(97)00065-1
  37. Sul, D., D. Lee, H. Im, E. Oh, J. Kim, and E. Lee (2002) Single strand DNA breaks in T- and B-lymphocytes and granulocytes in workers exposed to benzene. Toxicol. Lett. 134: 87-95 https://doi.org/10.1016/S0378-4274(02)00167-4
  38. Joo, W. A., D. Sul, D. Y. Lee, E. Lee, and C. W. Kim (2004) Proteomic analysis of plasma proteins of workers exposed to benzene. Mutat. Res. 558: 35-44 https://doi.org/10.1016/j.mrgentox.2003.10.015
  39. Lee, H. J., D. Y. Lee, W. A. Joo, D. Sul, E. Lee, and C. W. Kim (2004) Differential expression of proteins in rat plasma exposed to benzene. Proteomics 4: 3498-3504 https://doi.org/10.1002/pmic.200400996
  40. Weiss, A., B. A. Irving, L. K. Tan, and G. A. Koretzky (1991) Signal transduction by the T cell antigen receptor. Semin. Immunol. 3: 313-324
  41. Vermeulen, R., Q. Lan, L. Zhang, L. Gunn, D. McCarthy, R. L. Woodbury, M. McGuire, V. N. Podust, G. Li, N. Chatterjee, R. Mu, S. Yin, N. Rothman, and M. T. Smith (2005) Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics. Proc. Natl. Acad. Sci. USA 102: 17041-17046
  42. Schoket, B. (1999) DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mutat. Res. 424: 143-153 https://doi.org/10.1016/S0027-5107(99)00015-9
  43. Habe, H. and T. Omori (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67: 225-243 https://doi.org/10.1271/bbb.67.225
  44. Jongeneelen, F. J., R. B. Anzion, C. M. Leijdekkers, R. P. Bos, and P. T. Henderson (1985) 1-hydroxypyrene in human urine after exposure to coal tar and a coal tar derived product. Int. Arch. Occup. Environ. Health 57: 47-55 https://doi.org/10.1007/BF00383545
  45. Kim, H., Y. D. Kim, H. Lee, T. Kawamoto, M. Yang, and T. Katoh (1999) Assay of 2-naphthol in human urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 734: 211-217 https://doi.org/10.1016/S0378-4347(99)00350-3
  46. Noh, K. S., D. Y. Lee, J. H. Cha, W. A. Joo, E. Lee, and C. W. Kim (2004) Protein biomarkers in the plasma of workers occupationally exposed to polycyclic aromatic hydrocarbons. Proteomics 4: 3505-3513 https://doi.org/10.1002/pmic.200400964
  47. Sul, D., E. Oh, H. Im, M. Yang, C. W. Kim, and E. Lee (2003) DNA damage in T- and B-lymphocytes and granulocytes in emission inspection and incineration workers exposed to polycyclic aromatic hydrocarbons. Mutat. Res. 538: 109-119 https://doi.org/10.1016/S1383-5718(03)00095-0
  48. Pan, G., T. Hanaoka, Y. Yamano, K. Hara, M. Ichiba, Y. Wang, J. Zhang, Y. Feng, Z. Shujuan, D. Guan, G. Gao, N. Liu, and K. Takahashi (1998) A study of multiple biomarkers in coke oven workers-a cross sectional study in China. Carcinogenesis 19: 1963-1968 https://doi.org/10.1093/carcin/19.11.1963
  49. Gum, E. T., R. A. Swanson, C. Alano, J. Liu, S. Hong, P. R. Weinstein, and S. S. Panter (2004) Human serum albumin and its N-terminal tetrapeptide (DAHK) block oxidantinduced neuronal death. Stroke 35: 590-595 https://doi.org/10.1161/01.STR.0000110790.05859.DA
  50. Eliasson, M., K. Asplund, P. E. Evrin, and D. Lundblad (1995) Relationship of cigarette smoking and snuff dipping to plasma fibrinogen, fibrinolytic variables, and serum insulin. The Northern Sweden MONICA Study. Atherosclerosis 113: 41-53 https://doi.org/10.1016/0021-9150(94)05425-I
  51. Delanghe, J. R. and M. R. Langlois (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 312: 13-23 https://doi.org/10.1016/S0009-8981(01)00586-1
  52. Burchiel, S. W. and M. I. Luster (2001) Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin. Immunol. 98: 2-10 https://doi.org/10.1006/clim.2000.4934
  53. Salas, V. M. and S. W. Burchiel (1998) Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a] pyrene-7,8-dihydrodiol. Toxicol. Appl. Pharmacol. 151: 367-376 https://doi.org/10.1006/taap.1998.8455
  54. Domingo, J. L., M. C. Agramunt, M. Nadal, M. Schuhmacher, and J. Corbella (2002) Health risk assessment of PCDD/PCDF exposure for the population living in the vicinity of a municipal waste incinerator. Arch. Environ. Contam. Toxicol. 43: 461-465 https://doi.org/10.1007/s00244-002-1280-6
  55. Parzefall, W. (2002) Risk assessment of dioxin contamination in human food. Food Chem. Toxicol. 40: 1185-1189 https://doi.org/10.1016/S0278-6915(02)00059-5
  56. Scialli, A. R. (2001) Tampons, dioxins, and endometriosis. Reprod. Toxicol. 15: 231-238 https://doi.org/10.1016/S0890-6238(01)00134-4
  57. Skene, S. A., I. C. Dewhurst, and M. Greenberg (1989) Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: the risks to human health. A review. Hum. Toxicol. 8: 173-203 https://doi.org/10.1177/096032718900800301
  58. Massaad, C., F. Entezami, L. Massade, M. Benahmed, F. Olivennes, R. Barouki, and S. Hamamah (2002) How can chemical compounds alter human fertility? Eur. J. Obstet. Gynecol. Reprod. Biol. 100: 127-137 https://doi.org/10.1016/S0301-2115(01)00441-9
  59. Behnisch, P. A., K. Hosoe, and S. Sakai (2001) Combinatorial bio/chemical analysis of dioxin and dioxin-like compounds in waste recycling, feed/food, humans/wildlife, and the environment. Environ. Int. 27: 495-519 https://doi.org/10.1016/S0160-4120(01)00029-0
  60. Delescluse, C., G. Lemaire, G. de Sousa, and R. Rahmani (2000) Is CYP1A1 induction always related to AHR signaling pathway? Toxicology 153: 73-82 https://doi.org/10.1016/S0300-483X(00)00305-X
  61. Son, W. K., D. Y. Lee, S. H. Lee, W. A. Joo, and C. W. Kim (2003) Analysis of proteins expressed in rat plasma exposed to dioxin using 2-dimensional gel electrophoresis. Proteomics 3: 2393-2401 https://doi.org/10.1002/pmic.200300605
  62. Chu, F. F., R. S. Esworthy, J. H. Doroshow, K. Doan, and X. F. Liu (1992) Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 79: 3233-3238
  63. Stohs, S. J. (1990) Oxidative stress induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Free Radic. Biol. Med. 9: 79-90
  64. Godfroid, E., M. Geuskens, T. Dupressoir, I. Parent, and C. Szpirer (1991) Cytokeratins are exposed on the outer surface of established human mammary carcinoma cells. J. Cell Sci. 99: 595-607
  65. Schwarz, M., A. Buchmann, S. Stinchcombe, A. Kalkuhl, and K. Bock (2000) Ah receptor ligands and tumor promotion: survival of neoplastic cells. Toxicol. Lett. 112-113: 69-77 https://doi.org/10.1016/S0378-4274(99)00247-7
  66. Fan, F., D. M. Pinson, and K. K. Rozman (1995) Immunomodulatory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin tested by the popliteal lymph node assay. Toxicol. Pathol. 23: 513-517 https://doi.org/10.1177/019262339502300408
  67. Mitrou, P. I., G. Dimitriadis, and S. A. Raptis (2001) Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Eur. J. Intern. Med. 12: 406-411 https://doi.org/10.1016/S0953-6205(01)00146-7
  68. Lee, S. H., D. Y. Lee, W. K. Son, W. A. Joo, and C. W. Kim (2005) Proteomic characterization of rat liver exposed to 2,3,7,8-tetrachlorobenzo-p-dioxin. J. Proteome Res. 4: 335-343 https://doi.org/10.1021/pr049830s
  69. Tso, P., M. Liu, and T. J. Kalogeris (1999) The role of apolipoprotein A-IV in food intake regulation. J. Nutr. 129: 1503-1506 https://doi.org/10.1093/jn/129.8.1503
  70. Pazderova-Vejlupkova, J., E. Lukas, M. Nemcova, J. Pickova, and L. Jirasek (1981) The development and prognosis of chronic intoxication by tetrachlordibenzo-p-dioxin in men. Arch. Environ. Health 36: 5-11 https://doi.org/10.1080/00039896.1981.10667598
  71. Ferretti, G., T. Bacchetti, V. Bicchiega, and G. Curatola (2002) Effect of human Apo AIV against lipid peroxidation of very low density lipoproteins. Chem. Phys. Lipids 114: 45-54 https://doi.org/10.1016/S0009-3084(01)00201-8
  72. Blaner, W. S., M. J. Bonifacio, H. D. Feldman, R. Piantedosi, and M. J. Saraiva (1991) Studies on the synthesis and secretion of transthyretin by the human hepatoma cell line Hep G2. FEBS Lett. 287: 193-196 https://doi.org/10.1016/0014-5793(91)80049-9
  73. Gonzalez-Cinca, N., F. Rivera, J. Carreras, and F. Climent (2003) Effects of hypoxia and thyroid hormone on mRNA levels and activity of phosphoglycerate mutase in rabbit tissues. Horm. Res. 59: 16-20 https://doi.org/10.1159/000067934
  74. Nishimura, N., J. Yonemoto, Y. Miyabara, M. Sato, and C. Tohyama (2003) Rat thyroid hyperplasia induced by gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo- p-dioxin. Endocrinology 144: 2075-2083 https://doi.org/10.1210/en.2002-220737
  75. Kang, M. J., D. Y. Lee, W. A. Joo, and C. W. Kim (2005) Plasma protein level changes in waste incineration workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Proteome Res. 4: 1248-1255 https://doi.org/10.1021/pr049756d
  76. Ruoslahti, E. (1999) Fibronectin and its integrin receptors in cancer. Adv. Cancer Res. 76: 1-20 https://doi.org/10.1016/S0065-230X(08)60772-1
  77. Woodward, T. L., A. S. Mienaltowski, R. R. Modi, J. M. Bennett, and S. Z. Haslam (2001) Fibronectin and the $\alpha5\beta1$ integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology 142: 3214-3222 https://doi.org/10.1210/en.142.7.3214
  78. Chen, H., J. O. Egan, and J. F. Chiu (1997) Regulation and activities of alpha-fetoprotein. Crit. Rev. Eukaryot. Gene Expr. 7: 11-41 https://doi.org/10.1615/CritRevEukarGeneExpr.v7.i1-2.20
  79. Wang, Y. Y., G. H. Lo, K. H. Lai, J. S. Cheng, C. K. Lin, and P. I. Hsu (2003) Increased serum concentrations of tumor necrosis factor-alpha are associated with disease progression and malnutrition in hepatocellular carcinoma. J. Chin. Med. Assoc. 66: 593-598