Purification and Characterization of a Methanol Dehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System

  • Kim, Hee-Gon (Department of Biomaterials Engineering, Chosun University) ;
  • Kim, Si-Wouk (Department of Biomaterials Engineering, Chosun University)
  • 발행 : 2006.04.30

초록

Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) from Methylomicrobium sp. HG-1, which belongs to the type I group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in an ${\alpha}_2{\beta}_2$ conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and $60^{\circ}C$, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.

키워드

참고문헌

  1. Whittenbury, R., K. C. Phillips, and J. P. Wilkinson (1970) Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218 https://doi.org/10.1099/00221287-61-2-205
  2. Hanson, R. S. and T. E. Hanson (1996) Methanotrophic bacteria. Microbiol. Rev. 60: 439-437
  3. Reeburgh, W. S., S. C. Whalen, and M. J. Alperin (1993) The role of methylotrophy in the global methane budget. pp. 1-14. In: J. C. Murrell and D. P. Kelly (eds.). Microbial Growth on $C_1$ Compounds. intercept. Andover, United Kingdom
  4. Mancinelli, R. L. (1995) The regulation of methane in soil. Annu. Rev. Microbiol. 49: 581-605 https://doi.org/10.1146/annurev.mi.49.100195.003053
  5. Duine, J. A., J. Frank, and J. Westerling (1978) Purification and properteis of methanol dehydrogenase from Hyphomicrobium X. Biochem. Biophys. Acta. 524: 277- 287
  6. Duine, J. A., J. Frank, and L. G. De Ruiter (1979) Isolation of a methanol dehydrogenase with a functional coupling to cytochrome c. J. Gen. Microbiol. 115: 523-526 https://doi.org/10.1099/00221287-115-2-523
  7. Dispirito, A. A. (1990) Soluble cytochromes c from Methylomonas A4. Meth. Enzymol. 188: 289-297 https://doi.org/10.1016/0076-6879(90)88045-C
  8. Kim S. W., Y. T. Tae, and Y. M. Kim (1991) Methanol dehydrogenase of an obiligate methanotroph, Methylobacillus sp. strain SK1. Mol. Cells. 19: 407-413
  9. Koh, M. J., C. S. Kim, Y. A. Kim, H. S. Choi, E. H. Cho, E. B. Kim, Y. M. Kim, and S. W. Kim (2002) Properties of electron carriers in the process of methanol oxidation in a new restricted facultative marine methylotrophic bacterium, Methylophaga sp. MP. J. Microbiol. Biotechnol. 12: 476-482
  10. Anthony, C. (1986) Bacterial oxidation of methane and methanol. Adv. Microbial. Physiol. 27: 113-210 https://doi.org/10.1016/S0065-2911(08)60305-7
  11. Arfman, N. and L. Dukhuizen (1990) Methanol dehydrogenase from thermotolerant methylotroph Bacillus C1. Meth. Enzymol. 188: 223-226 https://doi.org/10.1016/0076-6879(90)88037-B
  12. Anthony, C. and L. J. Zatman (1964) The microbial oxidation of methanol. Purification and properties of methanol dehydrogenase of Pseudomonas sp. M27. Biochem. J. 92: 614-621 https://doi.org/10.1042/bj0920614
  13. Higgins, I. J., D. J. Best, R. C. Hammond, and D. Scott (1981) Methane-oxidizing microorganisms. Microbiol. Rev. 45: 556-590
  14. Grosse, S., K. D. Wendlandt, and H. P. Kleber (1997) Purification and properties of methanol dehydrogenase from Methylocystis sp. GB 25. J. Basic Microbiol. 37: 269- 279 https://doi.org/10.1002/jobm.3620370406
  15. Grosse, S., C. Voigt, K. D. Wendlandt, and H. P. Kleber (1998) Purification and properteis of methanol dehydrogenase from Methylosinus sp. WI 14. J. Basic Microbiol. 38: 189-196 https://doi.org/10.1002/(SICI)1521-4028(199807)38:3<189::AID-JOBM189>3.0.CO;2-S
  16. Kim, H., H. J. Eom, J. Lee, J. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth of Leuconostoc citreum. Biotechnol. Bioprocess Eng. 9: 278-284 https://doi.org/10.1007/BF02942344
  17. Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes from Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 9: 318-322 https://doi.org/10.1007/BF02942351
  18. Lee, Y. J., J. H. Kim, H. K. Kim, and J. S. Lee (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol. Bioprocess Eng. 9: 17-22 https://doi.org/10.1007/BF02949317
  19. Bradford, M. M. (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  20. Anthony, C. and L. J. Zatman (1964) The microbial oxidation of methanol. 2. The methanol oxidizing enzyme of Psudomonas sp. M27. Biochem. J. 92: 614-621 https://doi.org/10.1042/bj0920614
  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  22. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021
  23. Patel, R. N. and A. Felix (1976) Microbial oxidation of methane and methanol: Crystallization and properties of methanol dehydrogenase from Methylosinus sporium. J. Bacteriol. 128: 413-414
  24. Wadzinski, A. M. and D. W. Ribbons (1974) Oxidation of $C_1$ compounds by particulate fractions from Methylococcus capsulatus: Properties of methanol oxidase and methanol dehydrogenase. J. Bacteriol. 122: 1364-1374
  25. Alefounder, P. R. and S. J. Ferguson (1981) A periplasmic location for the methanol dehydrogenase from Paracoccus denitrificans: implications for proton pumping by cytochrome aa3. Biochem. Biophys. Res. Commun. 98: 778-784 https://doi.org/10.1016/0006-291X(81)91179-7
  26. Jones, C. W., S. A. Kingsbury, and M. J. Dawson (1982) The partial resolution and dye-mediated reconstitution of methanol oxidase in Methylophilus methylotrophus. FEMS Microbiol. Lett. 13: 195-200 https://doi.org/10.1111/j.1574-6968.1982.tb08255.x
  27. Kasprzak, A. A. and D. J. Steenkamp (1983) Localization of the major dehydrogenases in two methylotrophs by radiochemical labeling. J. Bacteriol. 156: 348-353
  28. Fassel, T. A., L. A. Buchholz, M. L. Collins, and C. C. Remsen (1992) Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labelling. Appl. Environ. Microbiol. 58: 2302- 2307
  29. Ferenci, T., T. Stom, and J. R. Quayle (1975) Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. Gen. Microbiol. 91: 79-91 https://doi.org/10.1099/00221287-91-1-79
  30. Takeda, K. and K. Tanaka (1980) Ultrastructure of intracytoplasmic membranes of Methanomonas margaritae cells grown under different conditions. Antonie van Leeuwenhoek 46: 15-25 https://doi.org/10.1007/BF00422225
  31. Scott, D., J. Brannan, and I. J. Higgins (1981) The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b. J. Gen. Microbiol. 125: 63-72
  32. Prior, S. D. and H. Dalton (1985) The effect of copper ions on membrane content and methane monoxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155-163
  33. Collins, M. L. P., L. A. Buchholz, and C. C. Remsen (1991) The effect of copper on Methylomonas Albus BG8. Appl. Environ. Microbiol. 57: 1261-1264
  34. Best, D. and I. J. Higgins (1981) Methane-oxidizing activity and membrane morphology in a methanol-grown obligate methanotroph, Methylosinus trichosporium OB3b. J. Gen. Microbiol. 125: 73-84
  35. DeBoer, W. E. and W. Hazeu (1972) Observation on the fine structure of a methane-oxidizing bacterium. Antonie van Leeuwenhoek 38: 33-47 https://doi.org/10.1007/BF02328075
  36. Suzina, N. E., V. V. Dmitriev, E. V. Chetina, and B. A. Fikhte (1984) Cytobiochemical features of methanotrophic bacteria. Mikrobiologiya. 53: 257-260
  37. Semrau, J. C., D. Zolandz, M. E. Lidstrom, and S. I. Chan (1995) The role of copper in the pMMO of Methylococcus capsulatus bath: A structural vs. catalytic function. J. Inorg. Biochem. 58: 235-244 https://doi.org/10.1016/0162-0134(94)00056-G
  38. Basu, P., B. Katterle, K. K. Andersson, and H. Dalton (2003) The membrane-associated form of methane monooxygenase from Methylococcus capsulatus (Bath) is a copper/ iron protein. Biochem. J. 369: 417-427 https://doi.org/10.1042/BJ20020823
  39. Nunn, D. N., D. Day, and C. Anthony (1989) The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. Biochem. J. 260: 857-862 https://doi.org/10.1042/bj2600857
  40. Parker, M. W., A. Cornish, V. Gossain, and D. J. Best (1987) Purification, crystallization, and preliminary X-ray diffraction characterization of methanol dehydrogenase from Methylosinus trichosporium OB3b. Eur. J. Biochem. 164: 223-227 https://doi.org/10.1111/j.1432-1033.1987.tb11014.x
  41. Patel, R. N., C. T. Hou, and A. Felix (1978) Microbial oxidation of methane and methanol: Crystalization of methanol dehydrogenase and properties of holo- and apomethanol dehydrogenase from Methylomonas methanica. J. Bacteriol. 133: 641-649
  42. Waechter-Brulla, D., A. A. Dispirito, L. V. Christoserdova, and M. E. Lisdstrom (1993) Methanol oxidation genes in the marine Methylomonas sp. strain A4. J. Bacteriol. 175: 3767-3775 https://doi.org/10.1128/jb.175.12.3767-3775.1993