• 제목/요약/키워드: methanotrophic bacteria

검색결과 12건 처리시간 0.031초

메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향 (Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity)

  • 정소연;윤희영;김태관;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제41권2호
    • /
    • pp.215-220
    • /
    • 2013
  • Tobermolite, perlite 및 polyurethane을 충전재로 이용한 바이오필터에 의한 메탄제거 기술이 개발되고 있다. 본 연구에서는 이들 충전재가 메탄산화능에 미치는 영향을 알아보았다. 습지토양과 매립지토양에서 분리한 혼합 메탄산화세균(consortium A, B, C and D)를 접종원으로 하고, 메탄산화속도와 메탄산화세균 수에 미치는 담체(perlite, tobermolite,polyurethane)의 영향을 조사하였다. Perlite를 첨가한 경우 메탄산화속도는 대조군 (담체 미첨가)보다 두 배 이상 증가하였고, 메탄산화세균 수도 10배 이상 증가하였다. Tobermolite를 첨가한 경우에는 일반세균 수 대비 메탄산화세균의 비율이 대조군과 다른 담체에 비해 높았다. 이는 tobermolite가 메탄산화세균이 우점할 수 있는 특이적 담체로 작용함을 시사한다. 이상의 결과로 부터 perlite와 tobermolite는 메탄산화세균의 활성을 증가시키는 서식지를 제공하며 메탄산화 공정시스템에 적용 시 좋은 담체의 역할을 할 수 있을 것으로 기대된다.

Purification and Characterization of a Methanol Dehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System

  • Kim, Hee-Gon;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.134-139
    • /
    • 2006
  • Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) from Methylomicrobium sp. HG-1, which belongs to the type I group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in an ${\alpha}_2{\beta}_2$ conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and $60^{\circ}C$, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.

메탄가스 전환 미생물촉매 개량을 위한 플라스미드 복제 시작점 예측 (Predicting Plasmid Replication Origin for Methane-converting Microbial Catalyst Improvement)

  • 김민식
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.46-52
    • /
    • 2023
  • Methane is the second most emitted greenhouse gas after carbon dioxide. Despite lower emissions than those of carbon dioxide, methane receives significant attention owing to its more than 20-fold higher global warming potential. Consequently, the importance of research on methanotrophic bacteria, microorganisms capable of converting methane gas into high-value materials, is increasingly emphasized. In the case of methanotrophic bacteria, knowledge on episomal plasmids that can be used for genetic engineering remains lacking, which poses significant challenges to the engineering process. The replication origin sequences of natural plasmids within methanotrophic bacteria have been predicted through in silico methods. The basic characteristics of the replication origin, such as a high A/T ratio, repetitive sequences, and proximity to proteins related to replication, have been used as criteria for identifying the replication origin. As a result, a region with a sequence of 18 base pairs repeated eight times could be identified. The putative replication origin sequence thus identified generally takes the form of iterons, but it also possesses unique features such as the length of the gap between iterons and the repetition of identical iteron sequences. This information can be valuable for future design of episomal plasmids applicable to methanotrophs.

메탄자화균에 의한 코발트의 생물흡착 (Biosorption of Cobalt by Methanotrophic Biomass)

  • 이무열;양지원
    • 대한환경공학회지
    • /
    • 제22권12호
    • /
    • pp.2163-2173
    • /
    • 2000
  • 메탄자화균에 의한 코발트 제거의 최적 pH 영역은 6.0~12.0이었으나 메탄자화균을 넣지 않은 blank는 10.5~11.5이었다. 코발트의 제거능은 pH에 크게 의존하였으나 blank보다는 민감하지 않았다. 초기 pH 6.0에서 1.0 g/L의 메탄자화균을 투입했을 때 170 mg Co/g biomass가 제거되었다. SEM 분석 결과에 의하면 코발트는 메탄자확균의 표면이나 세포의 분비 고분자에 흡착되어 제거된 것으로 사료된다. 초기 pH 6.0, 400 mg Co/L에서 메탄자화균의 최적의 투입량은 1.0 g/L이었다. 2.0 M NaCl과 $NaNO_3$의 높은 이온강도 하에서도 코발트 제거능은 그다지 영향을 받지 않았다.

  • PDF

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M.;Basri, Noor Ezlin Ahmad;Irwan, Dani;Younes, Mohammad K.
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

도심 학교 토양의 메탄 산화 및 생성 잠재력 평가 (Evaluation of Methane Oxidation and the Production Potential of Soils in an Urban School)

  • 이윤영;김태관;류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제42권1호
    • /
    • pp.32-40
    • /
    • 2014
  • 본 연구에서는 도심 학교 운동장(soil A)과 화단(soil B, C, & D)에서 채취한 토양의 잠재적인 메탄 산화 및 생성능을 평가하였다. 토양 원시료 중 메탄 산화균 수를 정량 분석한 결과, 운동장 토양(soil A)는 $6.1{\times}10^3$ gene copy number/g dry weight soil이었으나, 화단 토양(soil B~D)는 $1.6-1.9{\times}10^5$ gene copy number/g dry weight soil이었다. 토양을 넣은 혈청병에 메탄 가스를 주입하여 잠재 메탄 산화능을 평가한 결과, 운동장 토양은 다른 토양보다 메탄을 산화하기까지 긴 유도기를 보였으나, 유도기 이후에는 화단 토양과 거의 유사한 메탄 산화능을 나타냈다. 또한 운동장 토양의 메탄 산화균 수는 $2.3{\times}10^7$ gene copy number/g dry weight soil까지 증가하여 화단 토양의 메탄 산화균 수($1.2-2.8{\times}10^8$ gene copy number/g dry weight soil)과 유의적 차이를 보이지 않았다. 교정에서 채취한 토양의 메탄 생성 거동도 메탄 산화와 유사한 패턴을 보였다. 토양 원시료의 메탄 생성균 수는 화단 토양($1.3-3.4{\times}10^7$ gene copy number/g dry weight soil)에 비해 운동장 토양($1.7{\times}10^5$ gene copy number/g dry weight soil)이 훨씬 적었다. 그러나 토양에 유기물을 첨가한 후 메탄 생성 현상이 발휘된 후에는 메탄 생성 균수는 운동장 토양과 화단토양 모두 $10^7$ gene copy number/g dry weight soil 수준이었다. 본 연구를 통해 도심 교정에서 채취한 네 종류의 토양은 모두 메탄 산화균 및 생성균을 가지고 있으며, 메탄 산화와 생성에 적합한 조건이 되면, 메탄 산화균 및 생성균의 개체군이 증가하여 메탄을 산화하거나 생성할 수 있는 잠재력을 지니고 있음을 알 수 있었다.

Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China

  • Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.423-430
    • /
    • 2015
  • Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

매립지의 메탄 배출 저감을 위한 생물공학기술 (Biotechnology for the Mitigation of Methane Emission from Landfills)

  • 조경숙;류희욱
    • 한국미생물·생명공학회지
    • /
    • 제37권4호
    • /
    • pp.293-305
    • /
    • 2009
  • 메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.

Methanotrophs을 이용한 메탄 저감 기술 최신 동향 (Methane Mitigation Technology Using Methanotrophs: A Review)

  • 조경숙;정혜경
    • 한국미생물·생명공학회지
    • /
    • 제45권3호
    • /
    • pp.185-199
    • /
    • 2017
  • 메탄은 자연적인 발생원과 인위적인 발생원에 의해 배출되며 지구온난화를 야기하는 대표적인 온실가스이다. 메탄을 탄소원과 에너지원으로 이용하는 메탄산화세균은 메탄의 생물학적 산화에 중요한 역할을 한다. 메탄산화세균의 서식지는 매우 다양하며 메탄산화반응의 핵심 효소인 methane monooxygenases (MMOs)는 메탄뿐 아니라 다른 기질을 산화할 수 있는 기질특이성을 가지고 있다. 이러한 메탄산화세균의 특성으로 인해 생물학적 메탄 저감 기술과 생물정화기술 분야에서 메탄산화세균의 활용에 대한 연구가 활발히 진행되고 있다. 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다. 마지막으로, 메탄산화세균을 활용한 생물공학기술의 혁신을 위해 필요한 과제로 대사활성이 우수하거나 신규 대사능력을 가진 메탄산화세균의 지속적인 탐색 연구, 고농도 세포 대량배양기술 개발 및 미생물 컨소시움(메탄산화세균과 비메탄산화세균의 컨소시움) 디자인 및 관리 기술 등이 필요함을 제안하였다.