lacZ가 삽입된 PRV-Bartha 종의 신경친화성 및 무릎시상하부로 추적시 발현양상 분석

Neurotropism and Expression Pattern of lacZ Inserted PRV-Bartha in Geniculohypothalamic Tract Tracing

  • 김진상 (대구대학교 물리치료학과) ;
  • 박은세 (대구대학교 물리치료학과) ;
  • 천송희 (대구대학교 물리치료학과) ;
  • 김민희 (대구대학교 물리치료학과) ;
  • 방현수 (대구대학교 물리치료학과) ;
  • 권영실 (대구대학교 물리치료학과) ;
  • 이봉희 (제주대학교 의과대학 해부학교실) ;
  • 김영철 (계명대학교 공중보건학과)
  • 발행 : 2006.12.30

초록

To localize the connection between intergeniculate nucleus and suprachisasmatic nucleus through geniculohypothalamic tract in postnatal mongolian gerbil, we injected lacZ inserted PRV-Bartha strain into suprachiasrnatic nucleus and tried to immunostain against it with Rb134 and mouse $anti-{\beta}-galactosidase$. The numbers of immunoreactive neurons in intergeniculate leaflet were $8{\pm}3.2$ in P1 Period, $10{\pm}4.1$ in P3 Period and $13{\pm}6.2$ in P7 Period, and was statistically significant (p<0.05) and had tendency to increase with time consuming. The results showed that intergeniculate leaflet had projected some axons into suprachiasrnatic nucleus through geniculohyptothalamic tract in postnatal mongolian gerbil. But we could not exclude the possibility of direct projections from dorsal and ventral geniculate nuclei into suprachisamatic nucleus completely.

키워드

참고문헌

  1. Akiyama, M., Kouzu, Y., Takahashi, S., Wakamatsu, H., Moriya, T., Maetani, M., Watanabe, S., Tei, H., Sakaki, Y. and Shibata, S. (1999): Inhibition of light- or glutamateinduced mper1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci., 19, 1115-1121 https://doi.org/10.1523/JNEUROSCI.19-03-01115.1999
  2. Arvidsson, U., Riedl, M., Chakrabarti, S., Vulchanova, L., Lee, J.H., Nakano, A.H., Lin, X., Loh, H.H., Law, P.Y., Wessendorf, M.W. and Elde, R. (1995): The -opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc. Natl. Acad. Sci. USA, 92, 5062-5066
  3. Babic, N., Mettenleiter, T.C., Flamand, A. and Ugolini, G. (1993): Role of essential glycoprotein gII and gp50 in transneuronal transfer of pseudorabies virus from hypoglossal nerve of mice. J. Virol., 67, 4421-4426
  4. Biello, S.M. (1995): Enhanced photic phase shifting after treatment with antiserum to neuropeptide. Y. Brain Res., 673, 25-29 https://doi.org/10.1016/0006-8993(94)01345-I
  5. Biello, S.M., Janik, D. and Mrosovsky, N. (1994): Neuropeptide Y and behaviorally induced phase shifts. Neuroscience, 62, 273-279 https://doi.org/10.1016/0306-4522(94)90331-X
  6. Bilsky, E.J., Calderon, S.N., Wang, T., Bernstein, R.N., Davis, P., Hruby, V.J., McNutt, R.W., Rothman, R.B., Rice, K.C. and Porreca, F. (1995): SNC 80, a selective, nonpeptidic and systemically active opioid delta agonist. J. Pharm. Exp. Therap., 273, 359-366
  7. Bobrzynska, K.J. and Mrosovsky, N. (1998): Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J. Comp. Physiol. A., 182, 251-258 https://doi.org/10.1007/s003590050175
  8. Byku, M. and Gannon, R.L. (2000): Opioid induced nonphotic phase shifts of hamster circadian activity rhythms. Brain Res., 873, 189-196 https://doi.org/10.1016/S0006-8993(00)02304-0
  9. Card, J.P., Dubin, J.R., Whealy, M.E. and Enquist, L.W. (1995): Influence of infectious dose upon productive replication and transynaptic passage of pseudorabies virus in rat central nervous system. J. Neurovirol., 1, 349-358 https://doi.org/10.3109/13550289509111024
  10. Challet, E., Scarbrough, K., Penev, P.D. and Turek, F.W. (1998): Roles of suprachiasmatic nuclei and intergeniculate leaflets in mediating the phase-shifting effects of a serotonergic agonist and their photic modulation during subjective day. J. Biol. Rhythms, 13, 410-421 https://doi.org/10.1177/074873098129000237
  11. Ebling, F.J. (1996): The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol., 50, 109-132 https://doi.org/10.1016/S0301-0082(96)00032-9
  12. Edelstein, K. and Amir, S. (1999): The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci., 19, 372-380 https://doi.org/10.1523/JNEUROSCI.19-01-00372.1999
  13. Enquist, L.W., Dubin, J., Whealy, M.E. and Card, J.P. (1994): Complementation analysis of pseudorabies virus gE and gI mutants in retinal ganglion cell neurotropism. J. Virol., 68, 5275-5279
  14. Fukuhara, J., McKinley, B., Dirden, J.C., Bittman, E., Tosini, G. and Harrington, M.E. (2001): Neuropeptide Y rapidly reduces Period1 and Period2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci. Lett., 314, 119-122 https://doi.org/10.1016/S0304-3940(01)02304-7
  15. George, S.R., Zastawny, R.L., Briones-Urbina, R., Cheng, R., Nguyen, T., Heiber, M., Kouvelas, A., Chan, A.S. and O'Dowd, B.F. (1994): Distinct distribution of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem. Biophys. Res. Commun, 205, 1438-1444 https://doi.org/10.1006/bbrc.1994.2826
  16. Hall, A.C., Earle-Cruickshanks, G. and Harrington, M.E. (1999): Role of membrane conductances and protein synthesis in subjective day phase advances of the hamster circadian clock by neuropeptide Y. Eur. J. Neurosci., 11, 1-9 https://doi.org/10.1046/j.1460-9568.1999.00415.x
  17. Hastings, M.H., Duffield, G.E., Smith, E.J., Maywood, E.S. and Ebling, F.J. (1998): Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol. Int., 15, 425-445 https://doi.org/10.3109/07420529808998700
  18. Horikawa, K., Yokota, S., Fuji, K., Akiyama, M., Moriya, T., Okamura, H. and Shibata, S. (2000): Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced per1 and per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci., 20, 5867-5873 https://doi.org/10.1523/JNEUROSCI.20-15-05867.2000
  19. Huhman, K.L. and Albers, H.E. (1994): Neuropeptide Y microinjected into the suprachiasmatic region phase shifts circadian rhythms in constant darkness. Peptides, 15, 1475-1478 https://doi.org/10.1016/0196-9781(94)90126-0
  20. Janik, D. and Mrosovsky, N. (1994): Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res., 651, 174-182 https://doi.org/10.1016/0006-8993(94)90695-5
  21. Kim, J.S., Enquist, L.W. and Card, J.P. (1999): Circuit-Specific coinfection of neurons in the rat central nervous system with two pseudorabies virus recombinants. J. Virology, 73(11), 9521-9531
  22. Maywood, E.S. and Mrosovsky, N. (2001): A molecular explanation of interactions between photic and non photic circadian clock resetting stimuli. Gene Expr. Patterns, 1, 27-31 https://doi.org/10.1016/S1567-133X(01)00005-9
  23. Maywood, E.S., Okamura, H. and Hastings, M.H. (2002): Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei. Eur. J. Neurosci., 15, 216-220 https://doi.org/10.1046/j.0953-816x.2001.01852.x
  24. McKinley, B., Yannielli, P.C. and Harrington, M.E. (2002): Neuropeptide Y differencially suppresses per1 and per2 mRNA induced by light in the suprachiasmatic nuclei of the golden hamster. J. Biol. Rhythms., 17, 28-39 https://doi.org/10.1177/074873002129002311
  25. Mead, S., Ebling, F.J., Maywood, E.S., Humby, T., Herbert, J. and Hastings, M.H. (1992): A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of c-fos in the suprachiasmatic nuclei. J. Neurosci., 12, 2516-2522 https://doi.org/10.1523/JNEUROSCI.12-07-02516.1992
  26. Meyer-Bernstein, E.L. and Morin, L.P. (1996): Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J. Neurosci., 16, 2097-2111 https://doi.org/10.1523/JNEUROSCI.16-06-02097.1996
  27. Meyer-Bernstein, E.L. and Morin, L.P. (1998): Destruction of serotonergic neurons in the median raphe nucleus blocks circadian rhythm phase shifts to triazolam but not to novel wheel access. J. Biol. Rhythms., 13, 494-505 https://doi.org/10.1177/074873098129000327
  28. Moga, M.M. and Moore, R.Y. (1997): Organization of neural inputs to the suprachiasmatic nucleus in the rat. J. Comp. Neurol., 389. 508-534 https://doi.org/10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H
  29. Morin, L.P. and Blanchard, J.H. (2001): Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J. Comp. Neurol., 437, 79-90 https://doi.org/10.1002/cne.1271
  30. Morin, L.P. (1999): Serotonin and the regulation of mammalian circadian rhythmicity. Ann. Med., 31, 12-33 https://doi.org/10.3109/07853899909019259
  31. Morin, L.P. and Blanchard, J. (1995): Organization of the hamster intergeniculate leaflet: NPY and ENK projections to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus. Vis. Neurosci., 12, 57-67 https://doi.org/10.1017/S0952523800007318
  32. Morin, L.P. and Blanchard, J.H. (2001): Modulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J. Comp. Neurol., 437, 79-90 https://doi.org/10.1002/cne.1271
  33. Mrosovsky, N. (1991): Double-pulse experiments with nonphotic and photic phase-shifting stimuli. J. Biol. Rhythms., 6, 167-179 https://doi.org/10.1177/074873049100600207
  34. Pickard, G.E. (1982): The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J. Comp. Neurol., 211, 65-83 https://doi.org/10.1002/cne.902110107
  35. Standish, A., Enquist, L.W., Escardo, J.A. and Schwaber, J.S. (1995): Dendritic morphology of cardiac related medullay neurons defined by circuit specific infection by a recombinant pseudoravies virus expressing $\beta$-galactosidase. J. Neurovirol., 1, 359-368 https://doi.org/10.3109/13550289509111025
  36. Wickland, C. and Turek, F.W. (1994): Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster. Brain Res., 660, 293-300 https://doi.org/10.1016/0006-8993(94)91302-1
  37. Yannielli, P.C. and Harrington, M.E. (2000): Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo. NeuroReport, 11, 1587-1591 https://doi.org/10.1097/00001756-200005150-00042