Isolation and Activity of Insect Pathogenic Bacillus thuringiensis Strain from Soil

국내 토양으로부터 곤충병원성 세균인 Bacillus thuringiensis 균주의 분리 및 생물검정

  • Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences) ;
  • Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences) ;
  • Kil, Mi-Ra (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences) ;
  • Park, Dong-Sik (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
  • 김다아 (충남대학교 농업생명과학대학 농생물학과) ;
  • 김진수 (충남대학교 농업생명과학대학 농생물학과) ;
  • 길미라 (충남대학교 농업생명과학대학 농생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 농생물학과) ;
  • 박동식 (강원대학교 농업생명고학대학 농업과학연구소) ;
  • 유용만 (충남대학교 농업생명과학대학 농생물학과)
  • Published : 2006.12.30

Abstract

Bacillus thuringiensis strains were isolated from the domestic soil and a strain was selected that had a new host range and high toxicity against agriculture insect pest. The 142 samples of soil were sampled from the mountains, paddy fields and patches, in Daejon, Chungnam, Chungbuk and Jeonbuk and used for the investigation. Sixteen B. t strains were isolated from 12 samples among collected samples. There were 11 strains that showed toxical activity on Plutella xylostella (Lepidoptera: Yponomeutidae), 7 steins on Spodoptera litura (Lepidoptera: Noctuidae), 5 strains on Arete coerulea (Lepidoptera: Noctuidae), 5 strains on Culex pipiens pallens (Diptera: Culicidae) among the 16 isolated B. t strains. But there were not any strains that showed activity against Hyphanria cunea (Lepidoptera: Arctiidae) and Sitophilus oryzae (Coleoptera: Rhynchophoridae). And also some of B. thuringiensis strains showed insecticidal activity with 2, 3 or 4 kinds of insects. But there were also 3 strains that did not show any activities to the 6 insects which were used in the experiment. When examined with a phase-contrast microscope, the insecticidal crystal protein produced from 16 selected strains had 13 bipyramidal and 3 spherical shapes. The insecticidal bioactivity of the S. litura showed 100% mortality when there were $1.3{\times}10^{7}\;(cfu/ml)$ of CAB109 isolates.

국내 토양으로부터 Bacillus thuringiensis 균주를 분리하여 농업해충에 높은 활성범위를 나타내는 균주를 선발하였다. 토양은 대전, 충청남북도, 전라북도 등의 산과 들에서 142곳의 토양시료를 채취하여 실험에 사용하였다. 142개의 토양시료 중 12개로부터 16개의 B. thuringiensis 균주가 분리되었다. 선발된 16개의 B. thuringiensis 균주 중에서 나비목의 배추좀나방(Plutella xylostella)에 활성을 나타내는 것이 11균주, 담배거세미나방(Spodoptera litura)에 7균주, 암청색줄무늬밤나방(Arete coerulea)이 5균주, 파리목의 빨간집모기(Culex pipiens pallens)에 5균주가 독성을 나타내는 것으로 분리되었다. 그러나 나비목인 미국흰불나방(Hyphanria cunea)과 딱정벌레목의 쌀바구미(Sitophilus oryzae)에 활성을 나타내는 균주는 이 실험에서 발견되지 않았다. 또한 선발된 B. thuringiensis 균주가 2종류, 3종류 그리고 4종류의 해충에 함께 활성을 나타내는 것도 있었다. 그러나 시험된 6종류의 모든 곤충에 무독성인 균주도 3개가 나타났다. 선발된 16개 균주의 결정성단백질은 위상차 현미경으로 관찰하였을 때 이중피라미드형태가 13개이고 구형이 3개로 나타났다. 우리나라 난방제해충인 담배거세미나방에 대한 살충활성의 검정은 CAB109 균주가 $1.3{\times}10^{7}\;(cfu/ml)$에서 100%의 사망률을 보였다.

Keywords

References

  1. Aronson, A. I., W. Beckman and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbil. Rev. 50: 1-24
  2. Apaydin, Ozgur., A. F. Yenidunya, S. Harsa and H. Gunes. 2005. Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World Joumal of Microbiology & Biotechnology. 21: 285-292 https://doi.org/10.1007/s11274-004-3633-y
  3. Bernhard. K., P. Jarrett, M. Meadows, J. Butt, D. J. Ellis, G. M. Roberts, S. Pauli, P. Rodgers and H. D. Burges. 1997. Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70: 59-68 https://doi.org/10.1006/jipa.1997.4669
  4. da Silva, S. M. B., J. O. Silva-Werneck, R. Falcao, A. C. Gomes, R. R. Fragoso, M. T. Quezado, O. B. O. Neto, J. B. Aguiar, M. F. G. de Sa, A. Bravo and R. G. Monnerat. 2004. Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J. Appl. Ent. 128: 102-107 https://doi.org/10.1046/j.1439-0418.2003.00812.x
  5. DeLucca, A. J., M. S. Palmgren and A. Ciegler. 1981. Bacillus thuringiensis in grain elevator dusts. Can. J. Microbiol. 28: 452-456
  6. Gill. S. S., E. A. Cowles and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270: 27277-27282 https://doi.org/10.1074/jbc.270.45.27277
  7. Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstration rapid larvicidal avticity against Anopheles serengotii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. news. 37: 355-358
  8. Gough, J. M., D, H. Kemp, R. J. Akhurst, R. D. Pearson and K. Kongsuwan. 2005. Identification and characterization of proteins from Bacillus thuringiensis with high toxic activity against the sheep blowfly, Lucilia cuprina. J. Invertebr. Pathol. 90: 39-46 https://doi.org/10.1016/j.jip.2005.05.012
  9. Kim, H. S., H. W. Park, D. W. Lee, Y. M. Yu and S. K. Kang. 1995a. Cheracterization of Bacillus thuringiensis isolated in granary dust. Korean J. Apple. Entomol., 34(3): 243-248
  10. Kim, H. S., H. W. Park, D. W. Lee, Y. M. Yu, J. I. Kim and S. K. Kang. 1995b. Distribution and characterization of Bacillus thuringiensis isolated form soil in Korea. Korean J. Apple. Entomol., 34(4): 344-349
  11. Kim, H. S., D. W. Lee, H. W. Park, Y. M. Yu, J. I. Kim and S. K. Kang. 1995c. Distribution and characterization of Bacillus thuringiensis isolated form soils of sericultural farms in Korea. Korean J. Seric. Sci., 37(1): 57-61
  12. Kim, H. S., D. W. Lee, S. D. Woo, Y. M. Yu and S. K. Kang. 1998. Biological, Immunological, and Genetic analysis of Baciflus thuringiensis isolated form granary in Korea. Curr Microbiol. 37: 52-57 https://doi.org/10.1007/s002849900336
  13. Krieg, A., A. Huger, G. Langenbruch and W. Schnetter. 1983. Bacillus thuringiensis var. tenebrionis; A new pathotype effective against larvae of coleoptera. J. Appl. Entomol. 96: 500-508
  14. Martin, P. A. W, and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
  15. Ohba, M. and K. Aizwa. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303-309 https://doi.org/10.1016/0022-2011(78)90193-3
  16. Park, H. W., H. S. Kim, D. W. Lee, Y. M. Yu, B. R. Jin and S. K. Kang 1995. Expression and Synergistic effect of three types of crystal protein genes in Bacillus thuringiensis. Biochem. Biophys. Res. Commun., 214(2): 602-607 https://doi.org/10.1006/bbrc.1995.2328
  17. Smith, R. A., and G. A. Couche. 1991. The phylloplane as a source of Bacillus thuringiensis. Appl. Environ. Microbiol. 57: 311-315
  18. Tamez-Guerra, P., A. A. Iracheta, B. Percyra-Alferez, L. J. Galan-Wong, R. Gomez-Flores, R. S. Tamez-guerra, and C. Rodiguez-Padilla. 2004. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. J. Invertebr. Pathol. 8: 7-18
  19. Yasutake, K., N. D. Binh, K. Kagoshima, A. Uemori, A. Ohgushi, M. Maeda, E. Mizuki, Y. M. Yu and M. Ohba. 2006. Occurence of parasporin-producing Bacillus thuringiensis in Vietnam. Can. J. Microbiol. 52: 365-372 https://doi.org/10.1139/W05-134
  20. Zheng, S. J., B. Henken, R. A. de Maagd, A. Purwito, F. A. Krens and C. Kik. 2005. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hubner) in transgemic Bt-shallots (Allium cepa L.). 2005. Transgemic Research, 14: 261-272 https://doi.org/10.1007/s11248-005-0109-2