Effects of Carrier Mobility on Photocurrent Generation in $TiO_2/Poly$(alkylthiophene) Photovoltaic Devices

  • Song, Mi-Yeon (Department of Chemistry and Molecular Engineering, Korea University) ;
  • Kim, Kang-Jin (Department of Chemistry and Molecular Engineering, Korea University) ;
  • Kim, Dong-Young (Optoelectronic Materials Research Center, Korea Institute of Science and Technology)
  • Published : 2006.12.31

Abstract

In heterojunction photovoltaic devices of $ITO/TiO_2/poly$(3-alkylthiophene)/Au, the photo current was characterized at different temperatures for different alkyl chain lengths and regioregularities: regiorandom, regioregular poly(3-hexylthiophene), and regioregular poly(3-dodecylthiophene). The regioregularity and alkyl chain length affected the photovoltaic characteristics due to differences in hole-carrier transportation. The drift charge mobilities of these devices were analyzed by the space-charge-limited current theory using the relation between the dark current and the bias voltage. The photocurrent in the devices based on poly(3-alkylthiophene)s decreased rapidly below the temperature at which the drift charge mobility was $10^{-5}\;cm^2/V{\cdot}s$.

Keywords

References

  1. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002) https://doi.org/10.1126/science.1069156
  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, and A.B. Holmes, Nature (London), 347, 539 (1990) https://doi.org/10.1038/347539a0
  3. J. H. Schon, C. Kloc, and B. Batlogg, Nature (London), 406, 702 (2000) https://doi.org/10.1038/35021011
  4. H.-C. Kim, J.-S. Kim, S. Baek, and M. Rhee, Macromol. Res., 14, 173 (2006) https://doi.org/10.1007/BF03218505
  5. K. Kaneto, K. Hatae, S. Nagamatsu, W. Takashima, S. S. Pandey, K. Endo, and M. Rikukawa, Jpn. J. Appl. Phys., 38, L1188 (1999) https://doi.org/10.1143/JJAP.38.L1188
  6. D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, J. Appl. Phys., 93, 3376 (2003) https://doi.org/10.1063/1.1545162
  7. C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. Blom, Adv. Funct. Mater., 14, 865 (2004) https://doi.org/10.1002/adfm.200305156
  8. I. Riedel, J. Parisi, V. Dyakonov, V. Dyakonov, L. Lutsen, D. Vanderzande, and J. C. Hummelen, Adv. Funct. Mater., 14, 38 (2004) https://doi.org/10.1002/adfm.200304399
  9. M. Takahashi, K. Tsukigi, T. Uchino, and T. Yoko, Thin Sol. Films, 388, 231 (2001) https://doi.org/10.1016/S0040-6090(01)00811-2
  10. K. M. Coakley and M. D. McGehee, Appl. Phys. Lett., 83, 3380 (2003) https://doi.org/10.1063/1.1616197
  11. M. Leclerc, F. M. Diaz, and G. Wegner, Makromol. Chem., 190, 3105 (1989) https://doi.org/10.1002/macp.1989.021901208
  12. A. L. Fahrenbruch and R. H. Bube, in Fundamentals of Solar Cells, Academic Press, New York, 1983, Chapter 6
  13. A. J. Campbel, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997) https://doi.org/10.1063/1.366523
  14. K. Kaneto, W. Y. Lim, W. Takashima, T. Endo, and M. Rikukawa, Jpn. J. Appl. Phys., 39, L872 (2000) https://doi.org/10.1143/JJAP.39.L872