Production and Characterization of an Anti-Angiogenic Agent front Saccharomyces cerevisiae K-7

  • Jeong, Seung-Chan (Department of Life Science and Genetic Engineering, and Bio-Medicinal Resource Research Center, Paichai University) ;
  • Lee, Dae-Hyoung (Department of Life Science and Genetic Engineering, and Bio-Medicinal Resource Research Center, Paichai University) ;
  • Lee, Jong-Soo (Department of Life Science and Genetic Engineering, and Bio-Medicinal Resource Research Center, Paichai University)
  • Published : 2006.12.30

Abstract

The cell-free extracts of 250 yeasts were screened for their in vitro anti-angiogenic activity, to develop a new cancer metastasis inhibitor. Saccharomyces cerevisiae K-7 was selected as the producer of the anti-angiogenic agent, because it had the highest anti-angiogenic activity. The anti-angiogenic agent was produced maximally from hydrolysates of Saccharomyces cerevisiae K-7, when the yeast was cultured in yeast extract-peptone-dextrose medium at 30$^{\circ}C$ for 24 h, and cell-free extracts were than digested with pepsin for 4 h at 37$^{\circ}C$. The anti-angiogenic agent was further purified by ultrafiltration, Sephadex G-25 gel permeation chromatography and reverse-phase HPLC, and the anti-angiogenic activity of the final purified preparation was 72.7% at 10 $\mu$M/egg. The purified anti-angiogenic agent was found to originate from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) molecule of Saccharomyces cerevisiae K-7, and its peptide sequence was Val-Ser-Trp-Tyr-Asp-Asn-Glu-Tyr-Gly-Tyr-Ser-Thr-Arg-Val-Val-Asp. In the MTT assay, the shape of the HT-l 080 cell was clearly changed to a circular type at 0.2 mM purified anti-angiogenic agent. This result indicated that the growth of the HT-I080 cell was significantly inhibited at 0.2 mM of the purified anti-angiogenic agent. The MMP activity of the treated HT-l080 cells was not affected, evidenced by the gelatin zymography, indicating that the anti-angiogenic mechanism of the purified anti-angiogenic agent is not mediated through MMP activity.

Keywords

References

  1. Bassette, D. L. 1943. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73: 251-291 https://doi.org/10.1002/aja.1000730206
  2. Brakenhielm, E., R. Cao, and Y. Cao. 2001. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 15: 1798-1800 https://doi.org/10.1096/fj.01-0028fje
  3. Crum, R., S. Szabe, and J. Forkman. 1985. A new class of steroids inhibits angiogenesis in the presence of heparin fragment. Science 230: 1375-1378 https://doi.org/10.1126/science.2416056
  4. Curzio, R., M. Hasmin, F. J. Lejeune, and G. C. Alghisi. 2006. Antiangiogenic peptides and proteins: From experimental tools to clinical drugs. Biochim. Biophys. Acta 1765: 155- 177
  5. Fett, J. W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan, and B. L. Vallee. 1985. Isolation and characterization of angiogenin, an angiogenetic protein from human carcinoma cells. Biochemistry 24: 5480-5486 https://doi.org/10.1021/bi00341a030
  6. Folkman, J. 1972. Anti-angiogenesis: New concept for therapy of solid tumors. Ann. Surg. 175: 409-416 https://doi.org/10.1097/00000658-197203000-00014
  7. Folkman, J. and M. Hochberg. 1973. Self-regulation of growth in three dimensions. J. Exp. Med. 138: 745-753 https://doi.org/10.1084/jem.138.4.745
  8. Folkman, J. 1995. Angiogenesis inhibitors generated by tumors. Mol. Med. 1: 120-122
  9. Folkman, J. 1995. The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res. Treat. 36: 109-118 https://doi.org/10.1007/BF00666033
  10. Folkman, J. and P. A. D'Amore. 1996. Blood vessel formation: What is its molecular basis? Cell 87: 1153-1155 https://doi.org/10.1016/S0092-8674(00)81810-3
  11. Frater-Schroder, M., W. Risau, R. Hallmann, P. Gautschi, and P. Bohlen. 1987. Tumor necrosis factor type ${\alpha}$: A potent inhibitor of endothelial cell growth in vitro is angiogenetic in vivo. Proc. Natl. Acad. Sci. USA 84: 5277-5281
  12. Gimbrone, M. A. and P. M. Guillino. 1974. Neovascularization induced by intraocular xenografts of normal, preneoplastic, and neoplastic mouse mammary tissues. Fed. Proc. 33: 596-598
  13. Ginkowska, G., B. Balan, E. Sommer, U. Demkow, I. Sokolnicka, H. Stzelecka, and E. Skopinska-Rozewska. 1997. The effect of phenolic compounds of poplar leaves extract on cutaneous angiogenesis reaction induced in mice by human mononuclear leukocytes. Acta Pol. Pharm. 54: 151-154
  14. Gross, J. L., W. F. Herblin, B. A. Dusak, P. Czerniak, M. D. Diamond, T. Sun, and K. Eidsvoog. 1993. Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. J. Natl. Cancer Inst. 85: 121-131 https://doi.org/10.1093/jnci/85.2.121
  15. Ha, C. H., K. H. Lim, S. H. Jang, C. W. Yun, H. D. Paik, S. W. Kim, C. W. Kang, and H. I. Chang. 2006. Immuneenhancing alkali-soluble glucans produced by wild-type and mutant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 576-583
  16. Hisa, T., Y. Kimura, K. Takada, F. Suzuki, and M. Takigawa. 1998. Shikonin, an ingredient of Lithospermum erythrorhizon, inhibits angiogenesis in vivo and in vitro. Anticancer Res. 18: 783-790
  17. Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand. 1999. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998 https://doi.org/10.1126/science.284.5422.1994
  18. Jung, S. P. and M. H. Lee. 2000. Inhibition effect of angiogenesis with human endostatin. J. Soonchunhyang Med. Coll. 6: 313-319
  19. Jung, S. P. and M. H. Lee. 2001. Inhibition effect of angiostatin and endostatin on human angiogenesis. J. Korean Surgical 60: 1-7
  20. Jung, Y. D. and L. M. Ellis. 2001. Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int. J. Exp. Pathol. 82: 309-316 https://doi.org/10.1046/j.1365-2613.2001.00205.x
  21. Kang, H. Y., Y. S. Kim, G. J. Kim, J. H. Seo, and Y. W. Ryu. 2005. Screening and characterization of flocculent yeast, Candida sp. HY200, for the production of xylitol from D-xylose. J. Microbiol. Biotechnol. 15: 362-367
  22. Kim, B. J., S. Y. Koo, and S. S. Kim. 2002. A peptide derived from human prothrombin fragment 2 inhibits prothrombinase and angiogenesis. Thrombosis Res. 106: 81-87 https://doi.org/10.1016/S0049-3848(02)00086-5
  23. Kim, H. J., J. H. Kim, C. H. Lee, and H. J. Kwon. 2006. Gentisyl alcohol, an antioxidant from microbial metabolite, induces angiogenesis in vitro. J. Microbiol. Biotechnol. 16: 475-479
  24. Kim, J. H., D. H. Lee, S. C. Jeong, C. S. Chung, and J. S. Lee. 2004. Characterization of antihypertensive angiotensin I-converting enzyme inhibitor from S. cerevisiae. J. Microbiol. Biotechnol. 14: 1318-1323
  25. Kim, J. H., D. H. Lee, S. H. Lee, S. Y. Choi, and J. S. Lee. 2004. Effect of Ganoderma lucidum on the quality and physiological functionality of Korean traditional rice wine, Yakju. J. Biosci. Bioeng. Japan 97: 24-28 https://doi.org/10.1016/S1389-1723(04)70160-7
  26. Kim, J. H., S. H. Lee, N. M. Kim, S. Y. Choi, J. Y. Yoo, and J. S. Lee. 2000. Manufacture and physiological functionality of Korean traditional liquors by using dandelion (Taraxacum platycarpum). Kor. J. Biotechnol. Bioeng. 28: 367-371
  27. Kim, J. H., S. K. Cho, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang. 2006. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous Mutant JH1. J. Microbiol. Biotechnol. 16: 438- 442
  28. Kim, M. S., Y. M. Lee, E. J. Moon, S. E. Kim, J. J. Lee, and K. W. Kim. 2000. Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int. J. Cancer 1587: 269-275
  29. Kim, M. W., C. S. Shin, H. J. Yang, S. H. Kim, H. Y. Lim, C. H. Lee, M. K. Kim, and Y. G. Lim. 2004. Naltriben analogues as peptide anticancer drugs. J. Microbiol. Biotechnol. 14: 881-884
  30. Kim, Y., S. B. Kim, Y. J. You, and B. Z. Ahn. 2002. Deoxypodophyllotoxin, the cytotoxic and antiangiogenic component from Pulsatilla koreana. Planta Medica 68: 271-274 https://doi.org/10.1055/s-2002-23140
  31. Klagsbrun, M. and P. A. D'Amore. 1991. Regulators of angiogenesis. Annu. Rev. Physiol. 53: 217-239 https://doi.org/10.1146/annurev.ph.53.030191.001245
  32. Kobayashi, S., T. Miyamoto, I. Kimura, and M. Kimura. 1995. Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo and tube formation in vitro. Biol. Pharm. Bulletin 18: 1382-1386 https://doi.org/10.1248/bpb.18.1382
  33. Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, and S. G. Elner. 1992. Interleukin- 8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798-1801 https://doi.org/10.1126/science.1281554
  34. Koo, K. C., D. H. Lee, J. H. Kim, H. E. Yu, J. S. Park, and J. S. Lee. 2006. Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J. Microbiol. Biotechnol. 16: 582- 586
  35. Lee, D. H., W. J. Park, B. C. Lee, J. C. Lee, D. H. Lee, and J. S. Lee. 2005. Manufacture and physiological functionality of Korean traditional wine by using Gugija (Lycii fructus). Kor. J. Food Sci. Technol. 37: 789-794
  36. Lee, H. J., K. W. Lee, K. H. Kim, H. K. Kim, and H. J. Lee. 2004. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628- 630
  37. Lee, J. O., Y. O. Kim, D. H. Shin, J. H. Shin, and E. K. Kim. 2006. Production of selenium by autolysis of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 1041-1046
  38. Lee, J. S., S. H. Yi, S. J. Kwon, C. Ahn, and J. Y. Yoo. 1997. Isolation, identification and cultural conditions of yeasts from traditional meju. Kor. J. Appl. Microb. Biotech. 25: 435-441
  39. Moses, M. A., J. Sudhalter, and R. Langer. 1990. Identification of an inhibitor of neovascularization from cartilage. Science 248: 1408-1410 https://doi.org/10.1126/science.1694043
  40. Nguyen, M., Y. Shing, and J. Folkman. 1994. Quantitation of angiogenesis and anti-angiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47: 31-40 https://doi.org/10.1006/mvre.1994.1003
  41. Okikawa, T., M. Hasegawa, M. Simamura, H. Ashino-Fuge, S. I. Murota, and I. Morita. 1991. Eponemycin, a novel antibiotic, is a highly powerful angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 181: 1070-1076 https://doi.org/10.1016/0006-291X(91)92046-M
  42. Rhee, S. J., C. J. Lee, M. R. Kim, and C. H. Lee. 2004. Potential antioxidant peptides in rice wine. J. Microbiol. Biotechnol. 14: 715-721
  43. Roberts, A. B., M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche, L. M. Wakefield, and U. I. Heine. 1986. Transforming growth factor type ${\beta}$; rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83: 4167- 4171
  44. Tada, H., O. Shiho, K. Kuroshima, M. Koyama, and K. Tsukamoto. 1986. An improved colorimetric assay for interleukin 2. J. Immunol. Methods 93: 157-165 https://doi.org/10.1016/0022-1759(86)90183-3
  45. Toshinari, T., A. Furukawa, S. Hara, and H. Mizoguchi. 2004. Isolation and characterization of sake yeast mutants deficient in ${\gamma}$-aminobutyric acid utilization in sake brewing. J. Biosci. Bioeng. 97: 412-418 https://doi.org/10.1016/S1389-1723(04)70228-5
  46. Totowa, N. J. 1994. Basic Protein and Peptide Protocol. Humana Press, New jersey
  47. Wang. S., Z. Zheng, Y. Weng, Y. Yu, D. Zhang, W. Fan, R. Dai, and Z. Hu. 2004. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sci. 74: 2467-2478 https://doi.org/10.1016/j.lfs.2003.03.005