참고문헌
- E. Barletta and S. Dragomir, Differential equations on contact Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 30 (2001), no. 1, 63-95
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Pro- gress in Mathematics 203, Birkhauser Boston, Inc., Boston, MA, 2002
- D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214 https://doi.org/10.1007/BF02761646
-
E. Boeckx, A class of locally
${\varphi}$ -symmetric contact metric spaces, Arch. Math. (Basel) 72 (1999), no. 6, 466-472 https://doi.org/10.1007/s000130050357 -
E. Boeckx, A full classification of contact metric
$({\kappa},{\mu})$ -spaces, Illinois J. Math. 44 (2000), no. 1, 212-219 -
E. Boeckx and J. T. Cho,
${\eta}$ -parallel contact metric spaces, Differential Geom. Appl. 22 (2005), no. 3, 275-285 https://doi.org/10.1016/j.difgeo.2005.01.002 - E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), no. 3, 427-448
- J. T. Cho, A class of contact Riemannian manifolds whose associated CR- structures are integrable, Publ. Math. Debrecen 63 (2003), no. 1-2, 193-211
-
J. T. Cho and L. Vanhecke, Classification of symmetric-like contact metric
$({\kappa},{\mu})$ -spaces, Publ. Math. Debrecen 62 (2003), no. 3-4, 337-349 - J. T. Cho and S. H. Chun, The unit tangent sphere bundle of a complex space form, J. Korean Math. Soc. 41 (2004), no. 6, 1035-1047 https://doi.org/10.4134/JKMS.2004.41.6.1035
- J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932 https://doi.org/10.4134/JKMS.2005.42.5.913
- S. Ianus, Sulle varieta di Cauchy-Riemann, Rend. Accad. Sci. Fis. Mat. Napoli (4) 39 (1972), 191-195
- S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain struc- tures which are closely related to almost contact structure II, Tohoku Math. J. 13 (1961), 281-294 https://doi.org/10.2748/tmj/1178244304
- N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Car- tan connections, Japan J. Math. (N.S.) 2 (1976), no. 1, 131-190 https://doi.org/10.4099/math1924.2.131
- S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717
-
S. Tanno, Sasakian manifolds with constant
${\varphi}$ -holomororphic sectional curvature, Tohoku Math. J. (2) 21 (1969), 501-507 https://doi.org/10.2748/tmj/1178242960 - S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349-379 https://doi.org/10.2307/2001446
- S. Tanno, The standard CR structure on the unit tangent sphere bundle, Tohoku Math. J. (2) 44 (1992), no. 4, 535-543 https://doi.org/10.2748/tmj/1178227248
- Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. (2) 21 (1969), 117-143 https://doi.org/10.2748/tmj/1178243040
- S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25-41 https://doi.org/10.4310/jdg/1214434345
피인용 문헌
- Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces vol.35, pp.1, 2009, https://doi.org/10.1007/s10455-008-9120-1
- Affine biharmonic submanifolds in 3-dimensional pseudo-Hermitian geometry vol.79, pp.1, 2009, https://doi.org/10.1007/s12188-008-0014-8
- Pseudo-Hermitian symmetries vol.166, pp.1, 2008, https://doi.org/10.1007/s11856-008-1023-0
- A CLASSIFICATION OF SPHERICAL SYMMETRIC CR MANIFOLDS vol.80, pp.02, 2009, https://doi.org/10.1017/S0004972709000252
- PSEUDOHERMITIAN LEGENDRE SURFACES OF SASAKIAN SPACE FORMS vol.30, pp.4, 2015, https://doi.org/10.4134/CKMS.2015.30.4.457
- SLANT CURVES IN CONTACT PSEUDO-HERMITIAN 3-MANIFOLDS vol.78, pp.03, 2008, https://doi.org/10.1017/S0004972708000737
- A Schur-type theorem for CR-integrable almost Kenmotsu manifolds vol.66, pp.5, 2016, https://doi.org/10.1515/ms-2016-0217
- Pseudo-Einstein manifolds vol.196, 2015, https://doi.org/10.1016/j.topol.2015.05.013