초록
분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.
The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.