A New Carrier frequency Offset Estimation Using CP-ICA Scheme in OFDM Systems

OFDM 시스템에서 CP-ICA 기법을 이용한 새로운 주파수 옵셋 추정

  • 김종득 (시립인천대학교 전자공학과 신호처리연구실) ;
  • 변윤식 (시립인천대학교 전자공학과 신호처리연구실)
  • Published : 2006.12.30

Abstract

The carrier frequency offset causes loss of orthogonality between sub-carriers, thus leads to inter-carrier interference (ICI) in the OFDM symbol. This ICI causes severe degradation of the BER performance of the OFDM receiver. In this paper, we propose a new ICI cancellation algorithm which estimates frequency offset at the time-domain by using CP-ICA method to the received sub-carriers phase rotation. This algorithm is based on a statistical blind estimation method, which mainly utilizes the EVD, rotating phase and the $4^{th}-cumulants$. Since our scheme does not need any training and pilot symbol in estimation, we can expect enhanced bandwidth efficiency in OFDM systems. Simulation results show that the proposed frequency offset estimator is more accurate than the other estimators in $0.0<\varepsilon<1.0$.

반송파 주파수 옵셋은 OFDM(Orthogonal Frequency Division Multiplexing) 신호의 부채널간 간섭(ICI)을 유발하며, 수신 신호의 진폭과 위상을 왜곡시켜 전체적인 시스템 성능에 심각한 영향을 미친다. 본 논문에서는 OFDM 시스템에서 주파수 옵셋을 추정하는 새로운 기법을 제한한다. 이 기법은 주파수 옵셋으로 인해 위상이 회전 되어 왜곡된 OFDM 심볼의 CP와 유효 OFDM 심볼에 대해 통계적 독립 성분 분석(ICA - Independent Component Analysis)을 EVD(Eigenvalue Decomposition), 회전 페이저, 그리고 $4^{th}-cumulants$를 이용하여 시간영역에서 추정하여 보상하는 기법이다. 어떤 훈련 심볼열이나 파일럿 심볼을 필요하지 않기 때문에 대역폭 효율의 저하가 없다. 모의실험 결과, 제안된 CP-ICA 기법이 주파수 옵셋의 범위가 $0.0<\varepsilon<1.0$에서 기존의 제안된 주파수 옵셋 추정기보다 매우 좋은 BER 성능 결과를 보여준다.

Keywords

References

  1. IEEE standard 802.11a, Supplement to IEEE standard for information technology telecom. and information exchange between systems local and metropolitan area networks- specific requirements. Part 11: wireless LAN MAC and PHY. Sep. 1999
  2. R.Y. Nee and R. Prasad, 'OFDM for Wireless Multimedia Communications,' Artech House, 2000
  3. T. Pollet, M. van Bladel and M. Moeneclaey, 'BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,' IEEE Trans. on Comm., vol. 43, no. 2, pp. 887-895, Feb. 1995 https://doi.org/10.1109/26.380121
  4. L. J. Cimini Jr., 'Analysis and Simulation of a Digital Mobile Channel Using OFDM,' IEEE Trans. on Comm., vol. 33, pp. 665-675, Jul. 1985 https://doi.org/10.1109/TCOM.1985.1096357
  5. Y. Zhao and S. Haggman, 'Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,' IEEE. Trans. on Comm., vol. 49, no. 7, pp. 1185-1191, Jul. 2001 https://doi.org/10.1109/26.935159
  6. C. Muschallik, 'Improving an OFDM reception using an adaptive Nyquist windowing,' IEEE Trans. on Consumer Electronics, vol. 42, no. 3, pp. 259-269, Aug. 1996 https://doi.org/10.1109/30.536046
  7. P. H. Moose, 'A Technique for OFDM Frequency Offset Correction,' IEEE Trans. on Comm., vol. 42, no. 10, pp. 2908-2914, Oct. 1994 https://doi.org/10.1109/26.328961
  8. H. Minn and S. Xing, 'An Optimal Training Signal Structure for Frequency- Offset Estimation,' IEEE Trans. on Comm., vol. 53, no. 2, pp. 343-355, Feb. 2005 https://doi.org/10.1109/TCOMM.2004.842007
  9. U. Tureli and H. Liu, 'Blind carrier synchronization and channel identification for OFDM communications,' ICASSP'98, pp. 3509-3512, May 1998
  10. J. Beek, M. Sandell and P. O. Brojesson, 'ML estimation of time and frequency offset in OFDM systems,' IEEE Trans. on Signal Processing vol. 45, no. 7, pp. 1800-1805, Jul.1997 https://doi.org/10.1109/78.599949
  11. H. Bolcskei, 'Blind estimation of symbol timing and carrier frequency offset in pulse shaping OFDM systems,' ICASSP'99, pp. 1800-1805, Mar. 1999
  12. J. F. Cardoso, 'Source separation using higher order moments,' ICASSP'89, pp. 2109-2112, May 1989
  13. P. Comon, P. Chevalier and V. Capdeville, 'Performance of contrast-based blind source separation,' SPAWC'97, pp. 345-348, April 1997
  14. A. Hyvainen, J. Karhune and E. Oja, 'Independent component analysis,' Wiley Interscience, 2001
  15. C. S. Wong and D. Obradovic, 'Independent Component Analysis for blind equalization of frequency selective channel,' IEEE XIII Workshop on Neural Networks for Signal Processing, pp. 419- 427, Sep. 2003