DOI QR코드

DOI QR Code

Crack behavior of Surface Strengthened Zirconia-Alumina Composite During Indentation

  • Balakrishnan, A. (Department of Materials Engineering, Paichai University) ;
  • Chu, M.C. (Division of Advance Technology, Korea Research Institute of Standards and Science) ;
  • Panigrahi, B.B. (Division of Advance Technology, Korea Research Institute of Standards and Science) ;
  • Choi, Je-Woo (Department of Materials Engineering, Paichai University) ;
  • Kim, Taik-Nam (Department of Materials Engineering, Paichai University) ;
  • Park, J.K. (Department of Materials Science and Engineering, KAIST) ;
  • Cho, S.J. (Division of Advance Technology, Korea Research Institute of Standards and Science)
  • Published : 2006.12.27

Abstract

ZTA tubes were prepared by centrifugal casting and sintered at $1600^{\circ}C$ for 2 hrs. The ZTA tubes were machined into specimens of $3{\times}4{\times}40$ mm. Molten Soda lime glass (SLG) was penetrated into the surface of ZTA at an optimized condition of $1500^{\circ}C$ for the holding time of 5 h and furnace cooled. The extra glass on the surface was removed using a resin bonded diamond wheel. The glass penetrated samples were tested for their flexural strength using four point bend test. Vickers Indentation cracks were made on the glass penetrated surface at different loads of 9.8 N, 49 N, 98 N and 196 N. The residual compression on the surface enhanced the flexural strength and crack arrest behaviour remarkably. This was attributed to the thermoelastic mismatch between the glass and ZTA matrix during cooling.

Keywords

References

  1. W. D. Kingery, H. K. Bowen and D. L. Uhlmann, Introduction to Ceramics. Ch. 16, Second edition. John Wiley & Sons, New York (1976)
  2. R. Tandon R, D. J. Green and R. Cook, J. Am. Ceram. Soc., 73, 2619 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06737.x
  3. D. J. Green, R. Tandon and S. M. Sglavo, Science, 283, 1295 (1999) https://doi.org/10.1126/science.283.5406.1295
  4. H. P. Kirchner, R. M. Gruver and R. E. Walker, J. Am. Ceram. Soc., 51, 251 (1968) https://doi.org/10.1111/j.1151-2916.1968.tb13851.x
  5. S. Noda, H. Doi, T. Hioki, J.-I. Kawamoto and O. Kamigaito, J. Am. Ceram. Soc., 69, c-210 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07481.x
  6. A. V. Virkar, H. W. Huang and R. A. Cutler, J. Am. Ceram. Soc., 70, 164 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04952.x
  7. D. J. Green, J. Am. Ceram Soc., 66, c-178 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10543.x
  8. M. C. Chu, S. J. Cho, K. J. Yoon and H. M. Park, J. Am. Ceram. Soc., 88, 491 (2005) https://doi.org/10.1111/j.1551-2916.2005.00086.x
  9. P. L. Flaitz and J. A. Pask, J. Am. Ceram. Soc., 70, 449 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb05674.x
  10. J. Jhcbarocn and N. P. Padmre, J. Am. Ceram. Soc 81, 2301 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02625.x
  11. A. Balakrishnan, M. C. Chu, B. B. Panigrahi, K. J. Yoon, J. C. Kim, B. C. Lee T. N. Kim and S. J. Cho, Sol. Stat. Phenom., 124-126, 1161 (2006)
  12. M. B. Volf, Mathematical Approach to Glass (Elsevier Science Publishers, USA 1988)
  13. B. D. Cullity, Elements of 'X-ray' Diffraction (Addison Wesley Publishing Co., Inc., Reading, Massachusetts, USA 1978
  14. A. Paranjpye G, E. Beltz, and N.C. MacDonald, Modelling Simulation Mater. Sci. Eng., 13, 329 (2005) https://doi.org/10.1088/0965-0393/13/3/003
  15. J. Luo and R. Stevens, J. Eur, Ceram. Soc., 17, 1565 (1997) https://doi.org/10.1016/S0955-2219(97)00014-9
  16. Y. O. Wu, Y. F. Zhang, G. Pezzotti and J. K. Guo, J. Eur, Ceram. Soc., 22, 159 (2002) https://doi.org/10.1016/S0955-2219(01)00253-9
  17. Guazzato, M., Albakry, M., Ringer and S. P., Swain, M. V., Dent. Mater., 20(5)., 441 (2004) https://doi.org/10.1016/j.dental.2003.05.003