References
-
G. Figalli, M. Cava, and L. Tomasi, 'An
$H_{\infty}$ feedback control for a bilinear model of induction motor drives,' Int. J. Control, vol. 39, pp. 1007-1016, 1984 https://doi.org/10.1080/00207178408933227 - R. Mohler, Nonlinear Systems - Applications to Bilinear Control, Prentice-Hall, Englewood Cliffs, 1991
-
W. Cebuhar and V. Costanza, 'Approximation procedures for the
$H_{\infty}$ control for bilinear and nonlinear systems,' J. of Optimization Theory and Applications, vol. 43, no. 4, pp. 615-627, 1984 https://doi.org/10.1007/BF00935009 - E. Hoffer and B. Tibken, 'An iterative method for the finite-time bilinear quadratic control problem,' J. of Optimization Theory and Applications, vol. 57, pp. 411-427, 1988 https://doi.org/10.1007/BF02346161
-
Z. Aganovic and Z. Gajic, '
$H_{\infty}$ control of weakly coupled bilinear systems,' Automatica, vol. 29, pp. 1591-1593, 1993 https://doi.org/10.1016/0005-1098(93)90026-P -
Z. Aganovic and Z. Gajic, Linear
$H_{\infty}$ Control of Bilinear Systems: With Applications to Singular Perturbations and Weak Coupling, Springer, London, 1995 - P. Kokotovic, W. Perkins, J, Cruz, and G. D'Ans, 's-coupling for near-optimum design of large scale linear systems,' lEE Proc. Part D, vol. 116, pp. 889-892, 1969
- Z. Gajic and X. Shen, 'Decoupling transformation for weakly coupled linear systems,' Int. J. of Control, vol. 50, pp. 1515-1521, 1989
-
Z. Gajic and X. Shen, Parallel Algorithms for
$H_{\infty}$ Control of Large Scale Linear Systems, Springer, London, 1992 -
J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, 'State space solution to standard
$H_2$ and$H_{\infty}$ control problems,' IEEE Trans. on Automatic Control, vol. 34, no. 8, pp. 831-847, 1989 https://doi.org/10.1109/9.29425 -
L. Xie and E. S. Carlos, 'Robust
$H_{\infty}$ control for class of uncertain linear time-invariant systems,' lEE Proc. Part D, vol. 138, no. 5, pp. 479-483, 1991 -
L. Xie and E. S. Carlos, 'Robust
$H_{\infty}$ control for linear systems with norm-bounded time-varying uncertainty,' IEEE Trans. on Automatic Control, vol. 37, no. 8,pp. 1253-1256, 1992 https://doi.org/10.1109/9.151120 -
A. Van der Schaft, '
$H_2$ -gain analysis of nonlinear systems and nonlinear state-feedback$H_{\infty}$ control,' IEEE Trans. on Automatic Control, vol. 37, no. 6,pp. 770-784, 1992 https://doi.org/10.1109/9.256331 - R. Beard, Improving The Closed-Loop Performance of Nonlinear Systems, PhD thesis, Rensselaer Polytechnic Institute, Troy NY, 1995
- R. Beard, G. Saridis, and J. Wen, 'Galerkin approximation of the generalized Hamilton-Jacobi-Bellman equation,' Automatica, vol. 33, no. 12, pp.2159-2177, 1996 https://doi.org/10.1016/S0005-1098(97)00128-3
- R. Beard, and T. McLain. 'Succesive Galerkin approximation algorithms for nonlinear optimal and robust control,' Int. J. of Control, vol. 71, no. 5, pp. 717-743, 1998 https://doi.org/10.1080/002071798221542
- Y. J. Kim, B. S. Kim, and M. T. Lim, 'Composite control for singularly perturbed nonlinear systems via successive Galerkin approximation,' DCDIS, Series B: Applications and Algorithms, vol. 10, no. 2, pp. 247-258, 2003
- Y. J. Kim, B. S. Kim, and M. T. Lim, 'Composite control for singularly perturbed bilinear systems via successive Galerkin approximation,' lEE Proc. - Control Theory and Application, vol. 150, no. 5, pp. 483-488, 2003 https://doi.org/10.1049/ip-cta:20030814
- Y. Ying, M. Rao, and X. Shen., 'Bilinear decoupling control and its industrial application,' Proc. of American Control Conference, Chicago, pp. 1163-1167, 1992