DOI QR코드

DOI QR Code

An Overview of Chemically/Surface Modified Cubic Spinel LiMn2O4 Electrode for Rechargeable Lithium Batteries

  • Jung, Kyu-Nam (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2006.11.28

Abstract

The present article is concerned with the overview of the chemically/surface modified cubic spinel $LiMn_2O_4$ as a cathode electrode far lithium ion secondary batteries. Firstly, this article presented a comprehensive survey of the cubic spinel structure and its correlated electrochemical behaviour of $LiMn_2O_4$. Subsequently, the various kinds of the chemically/surface modified $LiMn_2O_4$ and their electrochemical characteristics were discussed in detail. Finally, this article reviewed our recent research works published on the mechanism of lithium transport through the chemically/surface modified $Li_{1-\delta}Mn_2O_4$ electrode from the kinetic view point by the analyses of the experimental potentiostatic current transients and ac-impedance spectra.

Keywords

References

  1. J. M. Tarascon and D. Guyomard, Electrochim. Acta, 38, 1221 (1993)
  2. M. M. Thackeray, Prog. Solid State Chem., 25, 1 (1997)
  3. V. Maney, B. Banoy, A. Momchiler, and A. Nassaleyska, J. Power Sources, 57, 99 (1995)
  4. P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 145, 3647 (1998)
  5. R. J. Gummow, A de Kock, and M. M. Thackeray, Solid State Ionics, 69, 59 (1994)
  6. F. Le Cras, D. Bloch, M. Anne, and P. Strobel, Solid State Ionics, 89, 203 (1996)
  7. L. Guohua, H. Ikuta, T. Uchida, and M. Wakihara, J. Electrochem. Soc., 143, 178 (1996)
  8. G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, and J. M. Tarascon, Solid State Ionics, 104, 13 (1997)
  9. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, and J.R. Dahn, J. Electrochem. Soc., 144, 205 (1997) https://doi.org/10.1149/1.1837386
  10. J. Cho, G. B. Kim, H. S. Lim, C. S. Kim, and S. I. Yoo, Electrochem. Solid-State Lett., 2, 607 (1999) https://doi.org/10.1149/1.1390922
  11. A. M. Kannan and A. Manthiram, Electrochem. Solid-State Lett., 5, A167 (2002) https://doi.org/10.1149/1.1482198
  12. Z. Liu, H. Wang, L. Fang, J. Y. Lee, and L. M. Gan, J. Power Sources, 104, 101 (2002)
  13. J. S. Gnanaraj, V. G. Pol, A. Gedanken, and D. Aurbach, Electrochem. Commun., 5, 940 (2003) https://doi.org/10.1016/j.elecom.2003.08.012
  14. D. Shu, G. Kumar, K. B. Kim, K. S. Ryu, and S. H. Chang, Solid State Ionics, 160, 227 (2003) https://doi.org/10.1016/S0167-2738(03)00190-5
  15. R. Vidu and P. Stroeve, Ind. Eng. Chem. Res., 43, 3314 (2004) https://doi.org/10.1021/ie034085z
  16. L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, Solid State Sci., 8, 113 (2006) https://doi.org/10.1016/j.solidstatesciences.2005.10.019
  17. C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, Electrochirn. Acta, 51, 3872 (2006) https://doi.org/10.1016/j.electacta.2005.11.015
  18. M. M. Thackeray, M. H. Rossouw, A. de Kock, A. P. de la Harpe, R. K. Gummow, K. Pearce, and D. C. Liles, J. Power Sources, 4344, 289 (1993)
  19. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc., 137, 169 (1990)
  20. Y. Gao, J. N. Reimers, and J. R. Dahn, Phys. Rev. B, 54, 3878 (1996)
  21. H. Abiko, M. Hibino, and T. Kudo, Electrochem. Solid-State Lett., 1, 114 (1998) https://doi.org/10.1149/1.1390655
  22. T. Kudo and M. Hibino, Electrochirn. Acta, 43, 781 (1998)
  23. W. J. F. David, M. M. Thackeray, L. A. de Picciotto, and J. B. Goodenough, J. Solid State Chem., 67, 316 (1987)
  24. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce, and J. B. Goodenough, Mat. Res. Bull., 19, 179 (1984)
  25. G. G Amatucci, N. Pereira, T. Zheng, and J. M. Tarascon, J. Electrochem. Soc., 148, A171 (2001)
  26. P. R. Moses, L. Wier, and R. W. Murray, Anal. Chem., 47, 1882 (1975)
  27. R. W. Murray, Ace. Chem. Res., 13, 135 (1980)
  28. R. W. Murray, A. G. Ewing, and R. A. Durst, Anal. Chem., 59, 379A (1987)
  29. A. M. Titse, A. M. Timinov, and G. A. Shagisultanova, Coord. Chem. Rev., 125, 43 (1993)
  30. S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, Adv. Mat., 12, 1315 (2000)
  31. L. Kavan, Chem. Rev., 97, 3061 (1997)
  32. A. J. Downard, Electroanalysis, 12, 1085 (2000)
  33. J. Zak and T. Kuwana, J. Am. Chem. Soc., 104, 5514 (1982)
  34. C. J. Miller and M. Majda, J. Am. Chem. Soc., 107, 1419 (1985) https://doi.org/10.1021/ja00290a039
  35. P. K. Ghosh and A. J. Bard, J. Am. Chem. Soc., 105, 5591 (1983)
  36. A. Walcarius, Electroanalysis, 8, 971 (1996) https://doi.org/10.1002/elan.1140081105
  37. V. Stara and M. Kopanica, Electroanalysis, 1, 251 (1989)
  38. K. Kalcher, Electroanalysis, 2, 419 (1990)
  39. J. Wang, Electroanalysis, 3, 255 (1991)
  40. D. Guyomard and J. M. Tarascon, J. Power Sources, 54, 92 (1995)
  41. M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, and M. A. Anderson, Electrochem. Commun., 5, 752 (2003) https://doi.org/10.1016/S1388-2481(03)00179-6
  42. M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin, and H. T. Yoneyama, J. Electrochem. Soc., 144, 1923 (1997)
  43. C. Arbizznani, M. Mastragostino, and M. Rossi, Electrochem. Commun., 4, 545 (2002)
  44. K.-H. Kim, S.-I. Pyun, and K.-N. Jung, Electrochim. Acta, 52, 152 (2006) https://doi.org/10.1016/j.electacta.2006.04.004
  45. K.-N. Jung and S.-J. Pyun, submitted to Electrochim. Acta (2006)
  46. S.-W. Kim and S.-I. Pyun, Electrochim. Acta, 47, 2843 (2002) https://doi.org/10.1016/S0013-4686(02)00173-1
  47. S.-W. Kim and S.-J. Pyun, J. Electroanal. Chem., 528, 114 (2002) https://doi.org/10.1016/S0022-0728(02)00900-2
  48. C. J. Wen, B. A. Boukamp, RA. Huggins, and W. Weppner, J. Electrochem. Soc., 126, 2258 (1979)
  49. J.-Y. Go, S.-J. Pyun, and H.-C. Shin, J. Electroanal. Chem., 527, 93 (2002) https://doi.org/10.1016/S0022-0728(02)00831-8
  50. J.-W. Lee and S.-I. Pyun, J. Power Sources, 119-121, 760 (2003)
  51. H.-C. Shin and S.-J. Pyun, 'Mechanisms of Lithium Transport through Transition Metal Oxides and Carbonaceous Materials'. In: C. G. Vayenas, B. E. Conway, RE. White (eds), Modem Aspects of Electrochemistry, No. 36, Ch. 5, Kluwer Academic Publishers/Plenum Press, New York (2003), pp. 255-301
  52. J.-W. Lee and S.-I. Pyun, Electrochim. Acta, 49, 753 (2004) https://doi.org/10.1016/j.electacta.2003.09.029
  53. D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R Oesten, and M. Schmidt, J. Electrochem. Soc., 147, 1322 (2000)
  54. J.-Y. Go and S.-I. Pyun, Electrochim. Acta, 49, 2551 (2004) https://doi.org/10.1016/j.electacta.2004.02.012
  55. K.-N. Jung and S.-I. Pyun, Electrochim. Acta, 49, 4371 (2004) https://doi.org/10.1016/j.electacta.2004.04.028
  56. D. D. Macdonald, 'Transient Techniques in Electrochemistry', Plenum Press, New York (1977), pp. 73