DOI QR코드

DOI QR Code

Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections

폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석

  • 박일주 (건국대학교 대학원 항공우주공학과) ;
  • 정성남 (건국대학교 기계항공공학부)
  • Published : 2006.10.31

Abstract

In this study, a closed-form analysis has been developed for the transverse shear behavior of thin-walled composite beams with closed cross-sections. The shear flow distributions and cross-section stiffness coefficients are derived analytically by using a mixed beam approach. The theory has been applied to single-celled composite box-beams with elastic couplings. The location of the shear center and the effect of transverse shear deformation on the static behavior of composite beams are investigated in the framework of the analysis. The present results are validated against those of a two-dimensional finite element analysis and a good correlation has been obtained for box-beam cases considered in this study.

본 연구에서는 폐쇄형 단면을 갖는 박판 복합재료 보의 정밀 i차원 보 해석모델을 개발하였다. 혼합보 이론을 이용하여 복합재료 보에 대한 전단 흐름 분포 및 단면 강성 행렬에 대한 엄밀해 표현식을 유도하였다. 이를 단일 세포 상자형 단면을 갖는 복합재료 보에 적용하여 상자형 보의 단면 강성행렬에 대한 엄밀해 표현식을 얻었다. 상자형 복합재료 보의 전단 중심을 계산하였으며, 전단 변형 효과가 폐쇄형 단면 보의 정적 거동에 미치는 영향에 대해서 고찰하였다. MSC/Nastran을 이용한 유한요소 해석을 통하여 본 연구의 타당성을 도였다.

Keywords

References

  1. 정성남, '전단변형을 고려한 개방형 단면 복합재료 보의 유한요소 구조해석' 한국항공우주학회지, 제29권, 제4호, 2001, pp. 71-77
  2. S. N. Jung, and J. Y. Lee, 'Closed-form Analysis of Thin-Walled Composite I-Bearns Considering Non-classical Effects,' Composite Structures, Vol. 60, No. 1, 2003
  3. R. Chandra, and I. Chopra, 'Structural Behavior of Two-Cell Composite Rotor Blades with Elastic Couplings,' AIAA Journal, Vol. 30, No. 12, 1992, pp. 2914-2921 https://doi.org/10.2514/3.11637
  4. J. B. Kosmatka, 'General Behavior and Shear Center Location of Prismatic Anisotropic Beams via Power Series,' International Journal of Solids and Structures, Vol. 31, No. 3, 1994, pp. 417-439 https://doi.org/10.1016/0020-7683(94)90114-7
  5. E. Reissner, 'The Center of Shear as a Problem of the Theory of Plates of Variable Thickness,' Archive of Applied Mechanics, Vol. 59, No. 3, 1989, pp. 324-332
  6. A. A. Griffith, and G. I. Taylor, 'The Problem of Flexure and its Solution by the Soap-Film Method.' Reports and Memoranda Adv. Comm. Aeronautics, No. 399. 1917
  7. J. Lee, 'Center of Gravity and Shear Center of Thin-Walled Open-Section Composite Beams,' Composite Structures, Vol. 52, No. 2, 2001, pp. 255-260 https://doi.org/10.1016/S0263-8223(00)00177-X
  8. W. Yu, V. V. Volovoi, D. H. Hodges, and X. Hong, 'Validation of the Variational Asymptotic Beam Sectional Analysis,' AIAA Journal, Vol. 40, No. 10, 2002
  9. W. Yu, D. H. Hodges, V. V. Volovoi, and E. D. Fuchs, 'A Generalized Vlasov Theory for Composite Beams,' Thin-Walled Structures, Vol. 43, No. 9, 2005, pp. 1493-1511 https://doi.org/10.1016/j.tws.2005.02.003
  10. A. Gjelsvik, The' Theory of Thin Walled Bars, Wiley & Sons, Ch. 1, 1981
  11. M. Jones, Mechanics of Composite Materials, McGraw -Hill, Ch. 4, 1975
  12. http://www.wolfram.com/