Regeneration of a Cartilage Tissue by In Vitro Culture of Chondrocytes on PLGA Microspheres

  • Son, Jeong-Hwa (Cell Therapy Center, Ajou University School of Medicine) ;
  • Park, So-Ra (Department of Physiology, College of Medicine, Inha University) ;
  • Kim, Hyeon-Joo (Bioengineering and Biotechnology Center, Departments of Biomedical Engineering, Chemical and Biological Engineering, Tufts University) ;
  • Min, Byoung-Hyun (Cell Therapy Center, Ajou University School of Medicine)
  • Published : 2006.10.31

Abstract

Cartilage tissue engineering has emerged as an alternative approach for reconstruction or repair of injured cartilage tissues. In this study, rabbit chondrocytes were cultured in a three-dimensional environment to fabricate a new cartilaginous tissue with the application of tissue engineering strategies based on biodegradable PLGA microspheres. Chondrocytes were seeded on PLGA microspheres and cultured on a rocking platform for 5 weeks. The PLGA microspheres provided more surface area to adhere chondrocytes compared with PLGA sponge scaffolds. The novel system facilitated uniform distribution of the cells on the whole of the PLGA microspheres, thus forming a new cartilaginous construct at 4 weeks of culture. The histological and immunohistochemical analyses verified that the number of chondrocytes and the amount of extracellular matrix components such as proteoglycans and type II collagen were significantly greater on the PLGA microspheres constructs as compared with those on the PLGA sponge scaffolds. Therefore, PLGA microspheres enhanced the function of chondrocytes compared with PLGA sponge scaffolds, and thus might be useful for formation of cartilage tissue in vitro.

Keywords

References

  1. Ameer, G. A., T. A. Mahmood, and R. Langer. 2002. A biodegradable composite scaffold for cell transplantation. J. Orthop. Res. 20: 16-19 https://doi.org/10.1016/S0736-0266(01)00074-2
  2. Brittberg, M. 1999. Autologous chondrocyte transplantation. Clin. Orthop. 367: 147-155 https://doi.org/10.1097/00003086-199910001-00016
  3. Brittberg M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331: 889-895 https://doi.org/10.1056/NEJM199410063311401
  4. Cannizzaro, S. M., R. F. Padera, R. Langer, R. A. Rogers, F. E. Black, M. C. Davies, S. J. Tendler, and K. M. Shakesheff. 1998. A novel biotinylated degradable polymer for cell-interactive applications. Biotechnol. Bioeng. 58: 529-535 https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<529::AID-BIT9>3.0.CO;2-F
  5. Chen, G., T. Ushida, and T. Tateishi. 2000. Hybrid biomaterials for tissue engineering: A preparative method of PLA or PLGA-collagen hybrid sponge. Adv. Mater. 12: 455-457 https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<455::AID-ADMA455>3.0.CO;2-C
  6. Choi, S., S. R. Park, and T. R. Heo. 2005. Inhibitory effect of Astragali radix on matrix degradation in human articular cartilage. J. Microbiol. Biotechnol.15: 1258-1266
  7. Freed, L. E., D. A. Grande, Z. Lingbin, J. Emmanual, J. C. Marquis, and R. Langer. 1994. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28: 891-899 https://doi.org/10.1002/jbm.820280808
  8. Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. 1994. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12: 689-693 https://doi.org/10.1038/nbt0794-689
  9. Freed, L. E., J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer. 1993. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27: 11-23 https://doi.org/10.1002/jbm.820270104
  10. Frondoza, C., A. Sohrabi, and D. Hungerford. 1996. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17: 879-888 https://doi.org/10.1016/0142-9612(96)83283-2
  11. Hendrickson, D. A., A. J. Nixon, D. A. Grande, R. J. Todhunter, R. M. Minor, H. Erb, and G. Lust. 1994. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J. Orthop. Res. 12: 485-487 https://doi.org/10.1002/jor.1100120405
  12. Kang, S. W., J. H. Park, and B. S. Kim. 2005. Use of neonatal chondrocytes for cartilage tissue engineering. J. Mircrobiol. Biotechnol. 15: 259-264
  13. Kawamura, S., S. Wakitani, T. Kimura, A. Maeda, A. I. Caplan, K. Shino, and T. Ochi. 1998. Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop. Scand. 69: 56-62 https://doi.org/10.3109/17453679809002358
  14. Kim, B., S. I. Jeong, S. Cho, J. Nikolovski, D. J. Mooney, S. H. Lee, O. Jeon, T. W. Kim, S. H. Lim, Y. S. Hong, C. Y. Choi, Y. M. Lee, S. H. Kim, and Y. H. Kim. 2003. Tissue engineering of smooth muscle under a mechanically dynamic condition. J. Microbiol. Biotechnol. 13: 841-845
  15. Messner, K. and J. Gillquist. 1996. Cartilage repair: A critical review. Acta Orthop. Scand. 67: 523-529 https://doi.org/10.3109/17453679608996682
  16. Ma, P. X., B. Schloo, D. Mooney, and R. Langer. 1995. Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater. Res. 29: 1587-1595 https://doi.org/10.1002/jbm.820291215
  17. Mikos, A. G., G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Lange. 1993. Laminated three-dimensional biodegradable forms for use in tissue engineering. Biomaterials 14: 323-330 https://doi.org/10.1016/0142-9612(93)90049-8
  18. Na, K. and K. Park. 2004. Immobilization of Arg-Gly-Asp (RGD) sequence in sugar-containing copolymer for culturing fibroblast cells. J. Microbiol. Biotechnol. 14: 193-196
  19. Paige, K. T., L. G. Cima, M. J. Yaremchuk, B. L. Schloo, J. P. Vacanti, and C. A. Vacanti. 1996. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast. Reconstr. Surg. 97: 168-180 https://doi.org/10.1097/00006534-199601000-00027
  20. Peter, S. J., M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. 1998. Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 43: 422-427 https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1
  21. Sato, T., G. Chen, T. Ushida, T. Ishii, N. Ochiai, and T. Tateishi. 2001. Tissue-engineered cartilage by in vivo culturing of chondrocytes in PLGA-collagen hybrid sponge. Mater. Sci. Eng. C 17: 83-89 https://doi.org/10.1016/S0928-4931(01)00313-7
  22. Wakitani, S., T. Kimura, A. Hirooka, T. Ochi, M. Yoneda, N. Yasui, H. Owaki, and K. Ono. 1989. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J. Bone Joint Surg. Br. 71: 74-80
  23. Yang, X. B., H. I. Roach, N. M. Clarke, S. M. Howdle, R. Quirk, K. M. Shakesheff, and R. O. Oreffo. 2001. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 29: 523-531 https://doi.org/10.1016/S8756-3282(01)00617-2