Identification of Anti-Angiogenic and Anti-Cell Adhesion Materials from Halophilic Enterobacteria of the Trachurus japonicus

  • Lim, Jong-Kwon (Department of Biotechnology, Chonnam National University) ;
  • Seo, Hyo-Jin (Department of Biotechnology, Chonnam National University) ;
  • Kim, Eun-Ok (Department of Biotechnology, Chonnam National University) ;
  • Meydani, Mohsen (Vascular Biology Laboratory, JM USDA-Human Nutrition Research Center on Aging at Tufts University) ;
  • Kim, Jong-Deog (Department of Biotechnology, Chonnam National University)
  • Published : 2006.10.31

Abstract

The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/ml$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited cell adhesion that non-activated U937 monocytic cell adhesion to HUVECs activated with $IL-1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with $IL-1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to $IL-1{\beta}$-stimulated HUVECs was completely suppressed by 121% at a concentration of $18.5{\mu}g/ml$. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin, and VE-cadherin to NF-kB, based on western bolt analysis. It also inhibited IL-l-stimulated HUVEC expression of the adhesion molecules, ICAM-l by 40%, VCAM-l by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities, and non-toxicity may be expected from these results.

Keywords

References

  1. Agarwal, A., S. Gupta, and R. K. Sharma. 2005. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 14: 1-36
  2. Altavilla, D., M. Galeano, A. Bitto, L. Minutoli, G. Squadrito, P. Seminara, F. S. Venuti, V. Torre, M. Calo, M. Colonna, P. L. Cascio, G. Giugliano, N. Scuderi, C. Mioni, S. Leone, and F. Squadrito. 2005. Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock 24: 85-91 https://doi.org/10.1097/01.shk.0000168523.37796.89
  3. Augustin, H. G. 2005 Angiogenesis in the female reproductive system. E.X.S. 94: 35-52
  4. Bates, D. O. and R. O. Jones. 2003. The role of vascular endothelial growth factor in wound healing. Int. J. Low Extrem. Wounds 2: 107-120 https://doi.org/10.1177/1534734603256626
  5. Beck, S. A., K. L. Smith, and M. J. Tisdale. 1991. Anticachetic and antitumor effect of EPA and its effect on protein turnover. Cancer Res. 51: 6089-6095
  6. Bilodeau, M. T. 2001. Angiogenesis inhibitors - A review of the recent patent literature. I. Drugs 4: 561-572
  7. Carmelit, P., M. G. Lampugnani, L. Moons, F. Breviaro, V. Compernolle, F. Bono, G. Balconi, R. Spagnuolo, B. Oosthuyse, M. Dewerchin, A. Zanetti, and A. Angellilo. 1999. Targeted deficiency or cystolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147-157 https://doi.org/10.1016/S0092-8674(00)81010-7
  8. Choi, Y. S., H. Park, and S. Jeong. 2006. Role of PI3-kinase/akt pathway in the activation of etoposide-induced NF-${\kappa}B$ transcription factor. J. Microbiol. Biotechnol. 16: 391-398
  9. Cotran, R. S. and J. S. Pober. 1990. Cytokine-endothelial interactions in inflammation, immunity and vascular injury. J. Am. Soc. Nephrol. 1: 225-235
  10. Day, R. M. 2005. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11: 768-777 https://doi.org/10.1089/ten.2005.11.768
  11. Devaraj, S. and I. Jialal. 1999. Alpha-tocopherol decreases interleukin-1 beta release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler. Thromb. Vasc. Biol. 19: 1125-1133 https://doi.org/10.1161/01.ATV.19.4.1125
  12. Doggrell, S. A. 2005. Pegaptanib: The first anti-angiogenic agent approved for neovascular macular degeneration. Expert. Opin. Pharmacother. 6: 1421-1423 https://doi.org/10.1517/14656566.6.8.1421
  13. Faruqi, R., C. de la Motte, and P. E. DiCorleto. 1994. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J. Clin. Invest. 94: 592-600 https://doi.org/10.1172/JCI117374
  14. Faruqui, R., C. de la Mote, and P. DiCorleto. 1994. ${\alpha}$-Tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J. Clin. Invest. 94: 592-600 https://doi.org/10.1172/JCI117374
  15. Folkman, J. and Y. Shing. 1992. Angiogenesis. J. Biol. Chem. 267: 10931-10934
  16. Genbacev, O., Y. Zhou, J. W. Ludlow, and S. J. Fisher. 1997. Regulation of human placental development by oxygen tension. Science 277: 1669-1672 https://doi.org/10.1126/science.277.5332.1669
  17. Gigante, B., M. Tarsitano, V. Cimini, S. De Falco, and M. G. Persico. 2004. Placenta growth factor is not required for exercise-induced angiogenesis. Angiogenesis 7: 277-284 https://doi.org/10.1007/s10456-004-4179-1
  18. Grant, M. B., A. Afzal, P. Spoerri, H. Pan, L. C. Shaw, and R. N. Mames. 2004. The role of growth factors in the pathogenesis of diabetic retinopathy. Expert. Opin. Investig. Drugs 13: 1275-1293 https://doi.org/10.1517/13543784.13.10.1275
  19. Kim, J. D., L. Liu, W. Guo, and M. Meydani. 2006. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J. Nutr. Biochem. 17: 165-176 https://doi.org/10.1016/j.jnutbio.2005.06.006
  20. Lee, S. Y., E. K. Kim, H. J. Seo, M. Y. Kim, and J. D. Kim. 2004. Development of new method for antioxidant capacity with ORP-pH system. Biotechnol. Bioprocess Eng. 9: 514-518 https://doi.org/10.1007/BF02933495
  21. Martin, A., T. Foxall, J. B. Blumberg, and M. Meydani. 1997. Vitamin E inhibitslow-density lipoprotein-induced adhesion of monocytes to human aortic endothelial cells in vitro. Arterioscler. Thromb. Vasc. Biol. 17: 429-436 https://doi.org/10.1161/01.ATV.17.3.429
  22. Mauri, N., M. Offermann, R. Swerlick, C. Kunsch, C. Rosen, M. Ahmad, W. Alexander, and R. Medford. 1993. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated thorough an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92: 1866-1874 https://doi.org/10.1172/JCI116778
  23. Mennecier, S., P. Servant, G. Coste, A. Bailone, and S. Sommer. 2006. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol. Microbiol. 59: 317-325 https://doi.org/10.1111/j.1365-2958.2005.04936.x
  24. Platz, E. A. 2002. Energy imbalance and prostate cancer. J. Nutr. 132: 3471-3481
  25. Ryu, J.-Y. and H.-G. Hur. 2005. Comparative analyses of flavonoids for nod gene induction in Bradyrhizobium japonicum USDA110. J. Microbiol. Biotechnol. 15: 1280-1285
  26. Schatz, F., G. Krikun, R. Caze, M. Rahman, and C. J. Lockwood. 2003. Progestin-regulated expression of tissue factor in decidual cells: Implications in endometrial hemostasis, menstruation and angiogenesis. Steroids 68: 849-860 https://doi.org/10.1016/S0039-128X(03)00139-9
  27. Schley, P. D., H. B. Jijon, L. E. Robinson, and C. J. Field. 2005. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res. Treat. 92: 187-195 https://doi.org/10.1007/s10549-005-2415-z
  28. Sheikh, A. Y., M. D. Rollins, H. W. Hopf, and T. K. Hunt. 2005. Hyperoxia improves microvascular perfusion in a murine wound model. Wound Repair Regen. 13: 303-308 https://doi.org/10.1111/j.1067-1927.2005.130313.x
  29. Shen, T. L., A. Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R. Flavell, H. Gu, and J. L. Guan. 2005. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J. Cell Biol. 169: 941-952 https://doi.org/10.1083/jcb.200411155
  30. Sussanne, I., Q. Zheng-Fischhofer, U. Preuss, K. Stamer, K. Baumann, B. Trinczek, J. Biernat, R. Godemann, E. Mandelkow, and E. Mandelkow. 1998. The endogeneous and cell-cycle-dependent phosphorylation of tauproteinin living cells; Implications for Alzheimer's disease. Mol. Biol. Cell 9: 1495-1512 https://doi.org/10.1091/mbc.9.6.1495
  31. Szollosi, R. and I. Varga. 2002. Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biol. Szegediensis 46: 125-127
  32. Tang, F. Y., N. Nhan, and M. Mohsen. 2003. Green tea catehins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of AKT molecule. Int. J. Cancer. 106: 871-873 https://doi.org/10.1002/ijc.11325
  33. Taylor, R. N., D. L. Lebovic, and M. D. Mueller. 2002. Angiogenic factors in endometriosis. Ann. NY Acad. Sci. 955: 89-100 https://doi.org/10.1111/j.1749-6632.2002.tb02769.x
  34. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  35. Tonini, T., F. Rossi, and P. P. Claudio. 2003. Molecular basis of angiogenesis and cancer. Oncogene 22: 6549-6556 https://doi.org/10.1038/sj.onc.1206816
  36. Ustadi, S., G. You, and S. M. Kim. 2006. Purification, characterization, and inhibitory activity of Glassfish (Liparis tanakai) egg high molecular weight protease inhibitor against papain and cathepsin. J. Microbiol. Biotechnol. 16: 524-530
  37. Weiss, J. B. and B. McLaughlin. 1998. Endothelial cell stimulating angiogenesis factor. Int. J. Biochem. Cell Biol. 30: 423-427 https://doi.org/10.1016/S1357-2725(97)00134-9
  38. Yancopoulos, G., M. Klagsbrun, and J. Folkman. 1998. Vasculogenesis, angiogenesis, and growth factors: Ephrins enter the fray at the border. Cell 93: 661-664
  39. Zhao, B., J. Cai, and M. Boulton. 2004. Expression of placenta growth factor is regulated by both VEGF and hyperglycaemia via VEGFR-2. Microvasc. Res. 68: 239-246 https://doi.org/10.1016/j.mvr.2004.07.004