Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System

  • Kim, Kyoung-Jin (Department of Life Science, College of Natural Sciences, Sunmoon University) ;
  • Song, Jae-Ho (Department of Life Science, College of Natural Sciences, Sunmoon University)
  • Published : 2006.10.31

Abstract

Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasm ids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size bead, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.

Keywords

References

  1. Bertani, G. and D.K. Chattoraj. 1980. Tandem pentuplication of a DNA segment in a derivative of bacteriophage P2: its use in the study of the mechanism of DNA annealing. Nucleic Acids Res. 8, 1339-1356 https://doi.org/10.1093/nar/8.6.1339
  2. Bertani, L.E. and E.W. Six. 1988. The P2-like phages and their parasite, P4, vol. 2, p. 73-143. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, USA
  3. Dokland, T., B.H. Lindqvist, and S.D. Fuller. 1992. Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacteriophage system. EMBO J. 11, 839-846
  4. Ghisotti, D., S. Finkel, C. Halling, G. Deho, G. Sironi, and R. Calendar. 1990. Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products and functions. J. Virol. 64, 24-36
  5. Guttman, B., R. Raya, and E. Kutter. 2004. Basic phage biology, p. 29-66. In E. Kutter, and A. Sulakvelidze (ed). Bacteriophage: biology and applications. CRC Press, Boca Raton, Florida, USA
  6. Kim, K.J. 1998. Development of selectable vector plasmid in bacteriophage P2-P4 system and its stability. The Korean J. Microbiol. 34, 236-242
  7. Kim, K.J., M.G. Sunshine, B.H. Lindqvist, and E.W Six. 2001. Capsid size determination in the P2-P4 bacteriophage system: suppression of sir mutations in P2's capsid gene N by supersid mutations in P4's external scaffold gene sid. Virology 283, 49-58 https://doi.org/10.1006/viro.2001.0853
  8. Lin, C.S. 1984. Nucleotide sequence of the essential region of bacteriophage P4. Nucleic Acids Res. 12, 8667-8684 https://doi.org/10.1093/nar/12.22.8667
  9. Lindqvist, B.H., G. Deho, and R. Calendar. 1993. Mechanism of genome propagation and helper exploitation by satellite phage P4. Microbio. Rev. 57, 683-702
  10. Marvik, O.J., T. Dokland, R. Nokling, E. Jacobson, T. Larsen, and B.H. Lindqvist. 1995. The capsid size-determining protein Sid forms an external scaffold on phage P4 procapsids. J. Mol. Biol. 251, 59-75 https://doi.org/10.1006/jmbi.1995.0416
  11. Nilssen, O., E.W. Six, M.G. Sunshine, and B.H. Lindqvist. 1996. Mutational analysis of the bacteriophage P4 capsid-size-determining gene. Virology 219, 432-442 https://doi.org/10.1006/viro.1996.0269
  12. Norrander, J., T. Kempe, and J. Messing. 1983. Construction of improved M13 vectors using oligodeoxynucIeotidedirected mutagenesis. Gene 26, 101-112 https://doi.org/10.1016/0378-1119(83)90040-9
  13. Parkinson, J.S. and R.J. Huskey. 1971. Deletion mutants of bacteriophage lambda. I: isolation and initial characterization. J. Mol. BioI. 56, 369-384 https://doi.org/10.1016/0022-2836(71)90471-2
  14. Raimondi, A., R. Donghi, A. Montaguti, A. Pessina, and G. Deho. 1985. Analysis of spontaneois deletion mutants of satellite bacteriophage P4. J. Virol. 54, 233-235
  15. Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: a laboratory manual (3rd ed.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
  16. Sasaki, I. and G. Bertani. 1965. Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J. Gen. Microbiol. 40, 365-376 https://doi.org/10.1099/00221287-40-3-365
  17. Shore, D., G. Deho, J. Tsipis, and R. Goldstein. 1978. Determination of capsid size by satellite bacteriophage P4. Proc. Natl. Acad. Sci. USA 75, 400-404
  18. Six, E.W. and C.A.C. Klug. 1973. Bacteriophage P4: A satellite virus depending on a helper such as prophage P2. Virology 51, 327-344 https://doi.org/10.1016/0042-6822(73)90432-7
  19. Six, E.W., M.G. Sunshine, J. Williams, E. Haggard-Ljungquist, and B.H. Lindqvist. 1991. Morphoietic switch mutations of bacteriophage P2. Virology 182, 34-46 https://doi.org/10.1016/0042-6822(91)90645-R
  20. Wang, S., J.R. Chang, and T. Dokland. 2006. Assembly of bacteriophage P2 and P4 procapsids with internal scaffolding protein. Virology 348, 133-140 https://doi.org/10.1016/j.virol.2005.12.021
  21. Ziermann, R., E.W. Six, B. Julien, and R. Calendar. 1993. Bacteriophage N. vol. 1, p. 70-74. In S. J. O'Brien (ed). Genetic map, 6th ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA