가우시안 정규기저를 이용한 $GF(2^m)$상의 워드-레벨 곱셈기

Word Level Multiplier for $GF(2^m)$ Using Gaussian Normal Basis

  • 김창훈 (대구대학교 정보통신공학과) ;
  • 권윤기 (성균관대학교 수학과) ;
  • 김태호 (대구대학교 정보통신공학과) ;
  • 권순학 (성균관대학교 수학과) ;
  • 홍춘표 (대구대학교 정보통신공학과)
  • 발행 : 2006.11.30

초록

본 논문에서는 타원곡선 암호 시스템(Elliptic Curve Cryptosystem : ECC)을 위한 $GF(2^m)$상의 새로운 워드-레벨 곱셈기를 제안한다. 제안한 곱셈기는 원소표기법으로 가우시안 정규기저(Gaussian Normal Basis: GNB)를 이용하며. [m/w] 클럭 사이클마다 곱셈 연산의 결과를 출력한다. 여기서 w는 워드크기이다. 제안한 워드-레벨 곱셈기를 Xilinx XC2V1000 FPGA칩을 이용하여 구현한 후 기존에 제안된 워드-레벨 곱셈기와 성능을 비교 분석한 결과. 가장 낮은 최대 처리기 지연시간(critical path delay)을 가진다

[ $GF(2^m)$ ] for elliptic curve cryptosystem. The proposed multiplier uses Gaussian normal basis representation and produces multiplication results at a rate of one per [m/w] clock cycles, where w is the selected we.4 size. We implement the p.oposed design using Xilinx XC2V1000 FPGA device. Our design has significantly less critical path delay compared with previously proposed hard ware implementations.

키워드

참고문헌

  1. IEEE 1363, Standard Specifications for Publickey Cryptography, 2000
  2. NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov/encryption
  3. A. Reyhani-Masoleh and M.A. Hasan, 'A New Construction of Massey-Omura Parallel Multipliers over GF($2^{m}$),' IEEE Transactions on Computers, Vol. 51, No.5, pp. 511-520, May. 2002 https://doi.org/10.1109/TC.2002.1004590
  4. M.C. Rosner, 'Elliptic Curve Cryptosystems on Reconfigurable Hardware,' MA thesis, Worcester Polytechnic Institute, 1998
  5. G. Orlando and C. Parr, 'A High Performance Reconfigurable Elliptic Curve Processor for GF($2^{m}$),' CHES 2000, LNCS 1965, 2000
  6. S. Kwon, K. Gaj, C.H. Kim, and C.P. Hong' 'Efficient Linear Array for Multiplication in GF($2^{m}$) Using a Normal Basis for Elliptic Curve Cryptography,' CHES 2004, LNCS 3156, pp. 76-91, 2004
  7. J.R. Goodman, Energy Scalable Reconfigurable Cryptographic Hardware for Portable Applications, PhD thesis, MIT, 2000
  8. J.H. Guo and C.L. Wang, 'Digit-Serial Systolic Multiplier for Finite Field GF($2^{m}$),' lEE Proc. Comput. Digit. Tech., vol. 145, no 2, pp. 143-148, Mar. 1999
  9. C.H. Kim, S.D. Han and C.P. Hong, 'An Efficient Digit-Serial Systolic Multiplier for Finite Field GF($2^{m}$),' Proc. on 14th Annual IEEE International Conference of ASIC/SOC, pp. 361-365, 2001
  10. N. Gura, S.C. Shantz, H.E. Sumit Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila, 'An End-to-End Systems Approach to Elliptic Curve Cryptography,' CHES '02, LNCS 2523, pp. 349-365, 2002
  11. A. Reyhani-Masoleh and' M.A. Hasan' 'Efficient Digit-Serial Normal Basis Multipliers over GF($2^{m}$),' ACM Trans. Embedded Computing Systems (TECS), special issue on embedded systems and security, vol. 3, no. 3, pp. 575-592, Aug. 2004 https://doi.org/10.1145/1015047.1015053
  12. A. Reyhani-Masoleh and M.A. Hasan, 'Low Complexity Word-Level Sequential Normal Basis Multipliers,' 16th IEEE Transactions on Computers, vol. 54, No 2, pp. 98-110, 2005 https://doi.org/10.1109/TC.2005.29
  13. J. L. Massey and J .K. Omura, 'Computational method and apparatus for finite field arithmetic,' US Patent No. 4587627, 1986
  14. L. Gao and G.E. Sobelman, 'Improved VLSI Designs for Multiplication and Inversion in GF($2^{m}$) over Normal Bases,' Proc. 13th Ann. IEEE Int'/ ASIC/SOC Conf., pp.97-101, 2000