Growth Characteristics of Citrobacter sp. MB2, Azo Dyes Decolorizing Bacterium

아조염료 분해균 Citrobacter sp. MB2 생육특성

  • Kwoen, Dae-Jun (Department of Oriental Medicine Resources, Asia University) ;
  • Ji, Won-Dae (Daegu Regional Innovation Agency) ;
  • Kwon, O-Jun (Departent of Evaluation&Planning, Gyeonbuk Regional Innovation Agency) ;
  • Lee, Tae-Jong (Departent of Evaluation&Planning, Gyeonbuk Regional Innovation Agency) ;
  • Lee, Nan-Hee (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Son, Dong-Hwa (Department of Food Preparation, Daegu polytechnic college) ;
  • Choi, Ung-Kyu (Department of Oriental Medicinal Food and Nutrition, Asia University)
  • 권대준 (아시아대학교 한약자원학과) ;
  • 지원대 (대구전략산업기획단 평가기획실) ;
  • 권오준 (경북전략산업기획단 평가기획실) ;
  • 이태종 (경북전략산업기획단 평가기획실) ;
  • 이난희 (대구가톨릭대학교 식품영양학과) ;
  • 손동화 (대구산업정보대학 조리계열) ;
  • 최웅규 (아시아대학교 한방식품영양학과)
  • Published : 2006.09.30

Abstract

A Citrobacter sp. MB 2, azo dyes decolorizing bacterium, was isolated from the wastewater and soil and identified as Citrobacter sp.. It was examined that optimum conditions for culture media were 0.5% of sucrose, 1.0% of yeast extract, 0.1% of $K_2HPO_4$, 0.1% of $NaHCO_3$ per distilled water. The best efficient condition of culture was obtained at pH 7.0, $30^{\circ}C$ and aerobic shaking culture. The number of Citrobacter sp. MB2 in optimum medium was increased more than 7 fold compared to basal medium and 50 fold compared to nutrient broth. This strain was exhibited strong resistance against metal salts and antibiotics (ampicillin and penicillin G).

염색공단 주변의 토양과 하수로부터 아조염료 분해 탈색능이 우수한 MB2균을 분리하여 Citrobacter sp.로 동정하였다. Citrobacter sp. MB2의 성장 최적배지 및 배양조건은 sucrose 0.5%, yeast extract 1.0%, $K_2HPO_4$ 0.1%, $NaHCO_3$ 0.1%, pH 7.0, 배양온도 $30^{\circ}C$에서 호기적 진탕배양이었으며, 최적배지에서의 균성장은 분리용 배지나 nutrient broth에서의 균성장보다 각각 7배 및 50배 이상 개체수가 증가하였다. Citrobacter sp MB2는 금속염에 대해 강한 내성을 보였으며, 항생제 ampcillin과 penicillin G에 대해서 강한 내성을 보였다.

Keywords

References

  1. Park, E. H., M. S. Jang, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee. (2005) Decolorization of a sulfonated azo dye, congo red, by Staphylococcus sp. EY-3. J. Microbiol. Biotechnol. 15, 221-225
  2. An, S. Y., S. K. Min, I. H. Cha, Y. L. Choi, Y. S. Cho, C. H. Kim, and Y. C. Lee. (2002) Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24, 1037-1040 https://doi.org/10.1023/A:1015610018103
  3. Ji, W. D., Choi, U. K., Son, D. H. and Chung, Y. G. (1996) Inhibitory effect of azo dyes on microbial growth. J. Korean Soc. Hygien. Sci. 2, 29-37
  4. Jenkins, C. L. (1978) Textile dyes are potential hazards. J. Environ. Health. 40, 256-260
  5. Goszczynski, S., Paszczynski, A., Sasti-Grigsby, M. B., Crawford, R. L. and Crawford, D. L. (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochate chrysosporium and Streptomyces chromofuscus. J. Bacteriol. 176, 1339-1347 https://doi.org/10.1128/jb.176.5.1339-1347.1994
  6. Spadaro, J. T., Gold, M. H. and Renganathan, V. (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochate chrysosporium. Appl. Environ. Microbiol. 58, 2398-2401
  7. Gregory, P. (1993) Dyes and dyes intermediates, Encyclopedia of chemical Tehcnology, vol. 8. pp. 544-545. John Wiley & Sons, New York, USA
  8. Ryu, B. H. and Weon, Y. D. (1992) Decolorization of azo dyes by Aspergillus sojae B-10. J. Microbiol. Biotechnol. 2, 215-219
  9. Walker, R. and Gingell, R. (1971) Mechanisms of azo reduction by Streptococcus faecalis. II. the role of soluble flavins. Xenobiotica. 1, 231-239 https://doi.org/10.3109/00498257109033172
  10. Walker. R., Gingell, R. and Murrells, D. F. (1971) Mechanisms of azo reduction by Streptococcus faecalis I. Optimization of assay conditions. Xenobiotica. 1, 221-229 https://doi.org/10.3109/00498257109033171
  11. Dubin, P. and Wright, K. L. (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5, 563-571 https://doi.org/10.3109/00498257509056126
  12. Chizuko, T., Ogawa, T., Koga, D. and Idaka, E. (1981) Biodegradability of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13NA. Coloration Technol. 97, 166-169
  13. Chung K. T., Fulk, G. E. and Egan, M. (1978) Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol. 35, 558-562
  14. Ogawa, T., Tatome, C., and Idaka, E. (1981) Biodegradation of p-aminoazobenzene by continuous cultivation of Pseudomonas pseudomallei 13NA. Coloration Technol. 97, 435-438
  15. Ogawa, T., Tatome, C., Idaka, E. and Kamiya, H. (1986) Biodegradation of azo dyes by continuous cultivation of Pseudomonas cepacia 13NA. Coloration Technol. 102, 12-14
  16. Rafii. F., Franklin, W. and Cerniglia, C. E. (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56, 2146-2151
  17. Ryan, A. J., Roxon, J. J. and Sivayavirojana, A. (1968) Bacterial azo reduction - a metabolic reaction in mammals. Nature. 219, 854-855 https://doi.org/10.1038/219854a0
  18. Holt, J. G., Krig, N. R., Sneath, P. H. A., Staley, J. T. and Williams, S. T. (1994) In Bergey's Manual of Systematic Bacteriology, 9th ed. Williams and Wilkins, Baltimore, USA
  19. Dubin, P. and Wright, K. L. (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5, 563-571 https://doi.org/10.3109/00498257509056126
  20. Ji, W. D., Son, D. H., Jeong, M. S., Choi, U. K., Chung, H. C., Choi, K. Y. and Chung, Y. G. (1996) Characteristics of monoazo dye-decolorizing bacterium Klebsiella pneumoniae DB51. J. Korean Soc, Hygien. Sci. 2, 1-6