DOI QR코드

DOI QR Code

Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

  • Lee, Chul-Jae (Department of Chemistry Education, Kyungpook National University) ;
  • Kim, Hee-Jin (Department of Chemistry Education, Kyungpook National University) ;
  • Karim, Mohammad Rezaul (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Mu-Sang (Department of Chemistry Education, Kyungpook National University)
  • Published : 2006.04.20

Abstract

We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2-chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the $\gamma$-irradiation method. The influence of pH and the influence of anion $(Cl^-,\;Br^-,\;I^-)$ on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, $Br^-$ and $I^-$ were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance.

Keywords

References

  1. Surface Enhanced Raman Scattering; Chang, R. K.; Furtak, T. E., Eds.; Plenum: New York, 1982
  2. Creighton, J. A. Raman Spectroscopy of Adsorbates at Metal Surface in Vibrational Spectroscopy of Adsorbates; Wills, R. F., Ed.; Springer Series in Chemical Physics; Springer: Berlin, Heidelberg, New York, 1980; Vol 15, p 145
  3. Joo, S. W.; Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 391 https://doi.org/10.1006/jcis.2001.7692
  4. Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318
  5. Jung, J. H.; Choo, J. B.; Kim, D. J.; Lee, S. H. Bull. Korean Chem. Soc. 2006, 27(2), 277 https://doi.org/10.5012/bkcs.2006.27.2.277
  6. Han, S. W.; Lee, K. Y. Bull. Korean Chem. Soc. 2005, 26(9), 1427 https://doi.org/10.5012/bkcs.2005.26.9.1427
  7. Lee, C. J.; Kang, J. S.; Park, Y. T.; Karim, M. R.; Lee, M. S. Bull. Korean Chem. Soc. 2004, 25(12), 1779 https://doi.org/10.5012/bkcs.2004.25.12.1779
  8. Moody, R. L.; Vo-Dinh, T.; Fletcher, W. H. Appl. Spectrosc. 1987, 41, 966 https://doi.org/10.1366/0003702874447761
  9. Hou, X.; Wu, L.; Xu, W.; Qin, L.; Wang, C.; Zhang, X.; Shen, J. J. Colloids and Surfaces A: Physicochem. Eng. Aspects 2002, 198, 135 https://doi.org/10.1016/S0927-7757(01)00925-6
  10. Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318
  11. Kang, J. S.; Hwang, S. Y.; Lee, C. J.; Lee, M. S. Bull. Korean Chem. Soc. 2002, 23, 1604 https://doi.org/10.5012/bkcs.2002.23.11.1604
  12. Shin, H. S.; Yang, H. J.; Kim, S. B.; Lee, M. S. J. Colloid Interface Sci. 2004, 274, 89 https://doi.org/10.1016/j.jcis.2004.02.084
  13. Matthews, G. A.; Hislop, E. C. Application Technology for Crop Protection 1993
  14. Daruich, J.; Zirulnik, F.; Gimenez, M. S. Environ. Res. 2001, 85, 226 https://doi.org/10.1006/enrs.2000.4229
  15. Baxendale, J. H.; Fielden, E. M.; Keene, J. P. Proc. Roy. Soc. London, Ser A 1965, 286
  16. Nicewarner-Pena, S. R. et al., Science 2001, 294, 137 https://doi.org/10.1126/science.294.5540.137
  17. Suber, L.; Sondi, I.; Matijevi, E.; Goia, D. V. J. Colloid Interface Sci. 2005, 288, 489 https://doi.org/10.1016/j.jcis.2005.03.017
  18. Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Sons, Ltd.: 2001; p 229
  19. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92, 6327 https://doi.org/10.1021/j100333a030
  20. Moskovits, M. J. Phys. Chem. 1982, 77, 6327
  21. Takahashi, M.; Furukwa, H.; Fujita, M.; Ito, M. J. Phys. Chem. 1987, 91, 5940 https://doi.org/10.1021/j100307a025
  22. Takahashi, M.; Furukwa, H.; Fujita, M.; Ito, M. J. Phys. Chem. 1987, 91, 5940 https://doi.org/10.1021/j100307a025

Cited by

  1. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles vol.136, pp.3, 2011, https://doi.org/10.1039/C0AN00594K
  2. Detection of Pesticides and Metabolites Using Surface-Enhanced Raman Spectroscopy (SERS): Acephate vol.69, pp.7, 2015, https://doi.org/10.1366/14-07594
  3. Surface-Enhanced Raman Scattering of Benzenethiol Adsorbed on Silver-Exchanged Copper Powders vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.445
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. 은 양이온과 PVP의 상호작용에 대한 연구 vol.53, pp.5, 2006, https://doi.org/10.5012/jkcs.2009.53.5.565
  6. Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface vol.78, pp.1, 2006, https://doi.org/10.1016/j.saa.2010.09.018
  7. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface‐enhanced Raman scattering vol.43, pp.10, 2006, https://doi.org/10.1002/jrs.4087