DOI QR코드

DOI QR Code

The Catalytic Role of the W573 in the Mobile Loop of Recombinant Acetohydroxyacid Synthase from Tobacco

  • Karim, Masud (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Shim, Mi-Young (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Kim, Jeong-Mok (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Choe, Gyeong-Jae (Department of Chemistry, College of Natural Sciences, Hanyang University) ;
  • Kim, Jung-Rim (Department of Applied Chemistry, Hanyang University) ;
  • Choi, Jung-Do (School of Life Sciences, Chungbuk National University) ;
  • Yoon, Moon-Young (Department of Chemistry, College of Natural Sciences, Hanyang University)
  • Published : 2006.04.20

Abstract

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6 also referred to as acetolactate synthase) catalyzes the first common step in the metabolic pathway leading to biosynthesis of the branched-chain amino acids in plants and microorganisms. Due to its presence in plants, AHAS is a target for the herbicides (sulfonylurea and imidazolinone), which act as potent inhibitors of the enzyme. Recently, we have shown [J. Kim, D.G. Baek, Y.T. Kim, J.D. Choi, M.Y. Yoon, Biochem. J. (2004) 384, 59-68] that the residues in the “mobile loop” 567-582 on the C-termini are involved in the binding/stabilization of the active dimer and ThDP (thiamin diphosphate) binding. In this study, we have demonstrated the role of the W573 in the mobile loop of the C-termini of tobacco AHAS. The substitution of this W573 residue caused significant perturbations in the activation process and in the binding site of ThDP. Position W573 plays a structurally important role in the binding of FAD, maintaining the enzyme active site in the required geometry for catalysis to occur. In here we propose that the tryptophan at position 573 is important for the catalytic process.

Keywords

References

  1. Umbarger, H. E. Annu. Rev. Biochem. 1978, 47, 532-606
  2. Duggleby, R. G.; Pang, S. S. J. Biochem. Mol. Biol. 2000, 33, 1-36
  3. Chang, Y. Y.; Wang, A. Y.; Cronan, Jr. J. E. J. Biol. Chem. 1993, 268, 3911-3919
  4. Macheroux, P.; Schmid, J.; Amrhein, N.; Schaller, A. Planta 1999, 207, 325-334 https://doi.org/10.1007/s004250050489
  5. Pang, S. S.; Guddat, L. W.; Duggleby, R. G. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 1321-1323 https://doi.org/10.1107/S0907444901011635
  6. Pang, S. S.; Duggleby, R. G.; Guddat, L. W. J. Mol. Biol. 2002, 317, 249-262 https://doi.org/10.1006/jmbi.2001.5419
  7. Yoon, M. Y.; Hwang, J. H.; Choi, M. K.; Baek, D. K.; Kim, J.; Kim, Y. T.; Choi, J. D. FEBS Lett. 2003, 555, 185-191 https://doi.org/10.1016/S0014-5793(03)01177-3
  8. Chong, C. K.; Shin, H. J.; Chang, S. I.; Choi, J. D. Biochem. Biophys. Res. Commun. 1999, 259, 136-140 https://doi.org/10.1006/bbrc.1999.0740
  9. Kim, J.; Baek, D. G.; Kim, Y. T.; Choi, J. D.; Yoon, M. Y. Biochem. J. 2004, 384, 59-68 https://doi.org/10.1042/BJ20040427
  10. Chang, S. T.; Kang, M. K.; Choi, J. D.; Namgoong, S. K. Biochem. Biophys. Res. Commun. 1997, 234, 549-553 https://doi.org/10.1006/bbrc.1997.6678
  11. Oh, K. J.; Park, E. J.; Yoon, M. Y.; Han, J. R.; Choi, J. D. Biochem. Biophys. Res. Commun. 2001, 282, 1237-1243 https://doi.org/10.1006/bbrc.2001.4714
  12. Yoon, T. Y.; Chung, S. M.; Chang, S. I.; Yoon, M. Y.; Hahn, T. R.; Choi, J. D. Biochem. Biophys. Res. Commun. 2002, 293, 433-439 https://doi.org/10.1016/S0006-291X(02)00249-8
  13. Westerfeld, W. W. J. Biol. Chem. 1943, 161, 495-502
  14. Lee, Y. T.; Chang, A. K.; Duggleby, R. G. FEBS Lett. 1999, 452, 341-345 https://doi.org/10.1016/S0014-5793(99)00668-7
  15. Dawson, R. M. C.; Elliott, D. C.; Elliott, N. H.; Johnes, K. M. Data for Biochemical Research, 2nd ed.; Oxford University: 1979; p 423
  16. Cleland, W. W. Methods Enzymol. 1979, 63, 103-138 https://doi.org/10.1016/0076-6879(79)63008-2
  17. Hwang, J.; Kim, J.; Kim, Y. T.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc. 2003, 24, 1856-1858 https://doi.org/10.5012/bkcs.2003.24.12.1856
  18. Schloss, J. V.; Van Dyk, D. E.; Vasta, J. F.; Kutny, R. M. Biochemistry 1985, 24, 4952-4959 https://doi.org/10.1021/bi00339a034
  19. Chang, A. K.; Duggleby, R. G. Biochem. J. 1998, 333, 765-777 https://doi.org/10.1042/bj3330765
  20. Kim, J.; Kim, J. R.; Kim, Y. T.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc. 2004, 25, 721-725 https://doi.org/10.5012/bkcs.2004.25.5.721
  21. Miflin, B. J. Arch. Biochem. Biophys. 1971, 146, 542-550 https://doi.org/10.1016/0003-9861(71)90159-7
  22. Chang, A. K.; Duggleby, R. G. Biochem. J. 1997, 327, 161-169 https://doi.org/10.1042/bj3270161
  23. Yang, J. H.; Kim, S. S. Biochim. Biophys. Acta 1993, 1157, 178-184 https://doi.org/10.1016/0304-4165(93)90062-D
  24. Ibadah, M.; Bar-Ilan, A.; Livnah, O.; Schloss, J. V.; Barak, Z.; Chipman, D. M. Biochemistry 1996, 35, 16282-16291 https://doi.org/10.1021/bi961588i
  25. LaRossa, R. A.; Schloss, J. V. J. Biol. Chem. 1984, 259, 8753-8757
  26. Shaner, D. L.; Anderson, P. C.; Stidham, M. A. Plant Physiol. 1984, 76, 545-546 https://doi.org/10.1104/pp.76.2.545
  27. Hattori, J.; Brown, D.; Mourad, G.; Labbe, H.; Ouellet, T.; Sunohara, G.; Rutledge, R.; King, J.; Miki, B. Mol. Gen. Genet. 1995, 246, 419-425 https://doi.org/10.1007/BF00290445
  28. Falco, S. C.; McDevitt, R. E.; Chui, C. F.; Hartnett, M. E.; Knowlton, S.; Mauvais, C. J.; Smith, J. K.; Mazur, B. J. Dev. Ind. Microbiol. 1989, 30, 197-194
  29. Hattori, J.; Brown, D.; Mourad, G.; Labbe, H.; Ouellet, T.; Sunohara, G.; Rutledge, R.; King, J.; Miki, B. Molec. Gen. Genet. 1995, 246, 419-425 https://doi.org/10.1007/BF00290445
  30. Lee, K. Y.; Townsend, J.; Tepperman, J.; Black, M.; Chui, C. F.; Mazur, B.; Dunsmuir, P.; Bedbrook, J. EMBO J. 1988, 7, 1241-1248
  31. Bernasconi, P.; Woodworth, A. R.; Rosen, B. A.; Subramanian, M. V.; Siehl, D. L. J. Biol. Chem. 1995, 270, 17381-17385 https://doi.org/10.1074/jbc.270.29.17381

Cited by

  1. The Minimum Activation Peptide from ilvH Can Activate the Catalytic Subunit of AHAS from Different Species vol.14, pp.6, 2013, https://doi.org/10.1002/cbic.201200680
  2. Site-Specific Modifications of the Cys-45 Residue in Human Dihydrolipoamide Dehydrogenase to Ser and Tyr vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.907
  3. Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.947
  4. Expression of Acetohydroxyacid Synthase from Bacillus anthracis and Its Potent Inhibitors vol.28, pp.7, 2006, https://doi.org/10.5012/bkcs.2007.28.7.1109
  5. Characterization of Two Naturally Occurring Mutations Close to Cofactors in Human Dihydrolipoamide Dehydrogenase vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2327
  6. Structure and Functional Effect of Tryptophan Mutants of Nicotiana tabacum Acetohydroxyacid Synthase vol.29, pp.9, 2006, https://doi.org/10.5012/bkcs.2008.29.9.1823
  7. Characterization of a Naturally Occurring Mutation (Ile-12 to Thr) Close to Prosthetic Group FAD in Human Dihydrolipoamide Dehydrogenase vol.30, pp.4, 2006, https://doi.org/10.5012/bkcs.2009.30.4.777
  8. Characterization of Two Site-specifically Mutated Human Dihydrolipoamide Dehydrogenase (Leu-46 to Ala and Pro-52 to Val) vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2121