DOI QR코드

DOI QR Code

A New Fabrication Method of Aluminum Nanotube Using Anodic Porous Alumina Film as a Template

  • Published : 2006.08.20

Abstract

Aluminum nanotube has been fabricated by a physical vapor deposition/atmospheric pressure injection using an anodic porous alumina film as a template. The pore external-, and inside diameters and the length of the aluminum nanotubes fabricated by this method are 60 nm, 35 nm and 2 $\mu$m, respectively. The structure of the fabricated aluminum nanotubes was examined by a kind of chemical treatment as extraction of copper on the cross-sectional area of these aluminum tubes in a mixed solution of $CuCl_2$ and HCl by difference of ionization tendency between aluminum and copper. The composition of the aluminum nanotube was identified by the two dimensional Hybrid Plasma Equipment Model (HPEM) employing the inductively coupled plasma.

Keywords

References

  1. Ozin, G. A. Adv. Mater. 1992, 4, 612 https://doi.org/10.1002/adma.19920041003
  2. Engineering a Small World: From Atomic Manipulation to Microfabrication, The Special Section, Science 1991, 254, 1300-1342 https://doi.org/10.1126/science.254.5036.1300
  3. Wallraff, G. M.; Hinsberg, W. D. Chem. Rev. 1999, 99, 1801 https://doi.org/10.1021/cr980003i
  4. Smith, H. I.; Schattenburg, M. L. IBM J. Res. Develop. 1993, 37, 319
  5. Craighead, H. G. J. Appl. Phys. 1984, 55, 4430 https://doi.org/10.1063/1.333015
  6. Majumdar, A. P.; Oden, I.; Carrejo, J. P.; Nagahara, L. A.; Graham, J. J.; Alexander, J. Appl. Phys. Lett. 1992, 61, 2293 https://doi.org/10.1063/1.108268
  7. Stroscio, J. A.; Eigler, D. M. Science 1991, 254, 1319 https://doi.org/10.1126/science.254.5036.1319
  8. Liang, W.; Martin, C. R. J. Am. Chem. Soc. 1990, 112, 9666 https://doi.org/10.1021/ja00182a051
  9. Martin, C. R. Science 1994, 266, 1961 https://doi.org/10.1126/science.266.5193.1961
  10. Brumilk, C. J.; Martin, C. R. J. Am. Chem. Soc. 1991, 113, 3174 https://doi.org/10.1021/ja00008a057
  11. Masuda, H.; Fukuda, K. Science 1995, 268, 1466 https://doi.org/10.1126/science.268.5216.1466
  12. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775 https://doi.org/10.1038/35826
  13. Tonucci, R. J.; Justus, B. L.; Campillo, A. J.; Ford, C. E. Science 1992, 258, 783 https://doi.org/10.1126/science.258.5083.783
  14. Klein, J. D.; Herick II, R. D.; Palmer, D.; Sailor, M. J.; Brumlik, C. J.; Martin, C. R. Chem. Mater. 1993, 5, 902 https://doi.org/10.1021/cm00031a002
  15. Wu, C.-G.; Bein, T. Science 1994, 264, 1757 https://doi.org/10.1126/science.264.5166.1757
  16. Masuda, H.; Kenji, Y.; Nishio, K. Adv. Mater. 2000, 12, 1031 https://doi.org/10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
  17. Suh, J. S.; Lee, J. S. Appl. Phys. Lett. 1999, 75, 2047 https://doi.org/10.1063/1.124911
  18. Foss, C. A.; Hornyak Jr., G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1992, 96, 7497 https://doi.org/10.1021/j100198a004
  19. Jagminiene, A.; Valincius, G.; Riaukaie, A.; Jagminas, A. J. Crystal Growth 2005, 274, 622 https://doi.org/10.1016/j.jcrysgro.2004.10.021
  20. Brumilk, C. J.; Menon, V. P.; Martin, C. R. J. Mater. Res. 1994, 9, 1174 https://doi.org/10.1557/JMR.1994.1174
  21. Papadopoulos, J.; Li, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367 https://doi.org/10.1063/1.124377
  22. Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.; Prater, C. B. Science 1994, 263, 800 https://doi.org/10.1126/science.263.5148.800
  23. Masuda, H.; Satoh, M. Jpn. J. Appl. Phys. 1996, 35, L126 https://doi.org/10.1143/JJAP.35.L126
  24. Kyotani, T.; Tsai, L.-f.; Tomita, A. Chem. Mater. 1996, 8, 2109 https://doi.org/10.1021/cm960063+
  25. Kong, J.; Soh, H.; Cassell, A.; Quate, C. F.; Dai, H. Nature 1998, 395, 878 https://doi.org/10.1038/27632
  26. Kong, J.; Zhou, C.; Morpurgo, A.; Soh, H.; Marcus, C.; Quate, C.; Dai, H. Appl. Phys. 1999, A69, 305
  27. Wang, Z. L.; Liu, Y.; Zhang, Z. Handbook of Nanophase and Nanostructured Materials; Kluwer, Academic Press: New York, 2003; p 107
  28. Spohr, R. U. S. Patent 4 338 164, (1982)
  29. Fischer, B. E.; Spohr, R. Rev. Mod. Phys. 1983, 55(4), 907 https://doi.org/10.1103/RevModPhys.55.907
  30. Randal, J. N.; Reed, M. A.; Frazier, G. A. J. Vac. Sci. Technol. 1989, B7(6), 1398
  31. Oro, J. A.; Wolfe, J. C. J. Vac. Sci. Technol. 1983, B1(4), 1088
  32. Parthasarathy, R. V.; Phani, K. L. N.; Martin, C. R. Adv. Mater. 1995, 7, 896 https://doi.org/10.1002/adma.19950071103
  33. Lu, J.; Kushner, M. J. J. Vac. Sci. Technol. A 2001, 19(5), 2652 https://doi.org/10.1116/1.1399318
  34. Rossnagel, S. M. J. Vac. Sci. Technol. B 1998, 16(5), 2585 https://doi.org/10.1116/1.590242
  35. Zhang, Z.; Ying, J. Y.; Dresselhaus, M. S. J. Mater. Res. 1998, 13, 1745 https://doi.org/10.1557/JMR.1998.0243
  36. Lin, Y. M.; Cronin, S. B.; Ying, J. Y.; Dresselhaus, M. S.; Heremans, J. P. Appl. Phys. Lett. 2000, 76, 3944 https://doi.org/10.1063/1.126829
  37. Asoh, H.; Nishio, K.; Nakao, M.; Tamamura, T.; Masuda, H. J. Electrochem. Soc. 2001, 148, 152 https://doi.org/10.1149/1.1355686
  38. Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M.; Lee, S. B. Adv. Mater. 2001, 13, 2008
  39. Nano and Micro Engineered Membrane Technology; Rijn, van C. J. M., Ed.; Elsevier: Amsterdam, 2004; p 322

Cited by

  1. Fabrication of Aluminium Nanowires by Differential Pressure Injection vol.2013, pp.2090-8741, 2013, https://doi.org/10.1155/2013/132798
  2. Stress-induced growth of aluminum nanowires with a range of cross-sections vol.212, pp.3, 2014, https://doi.org/10.1002/pssa.201431618
  3. A novel technique for synthesizing dense alumina nanostructures vol.18, pp.21, 2007, https://doi.org/10.1088/0957-4484/18/21/215607
  4. Simultaneous Control of Au Nanotube Lengths and Pore Sizes with a Single Kind of Polycarbonate Membrane via Interfacial Deposition at the Air/Water Interface vol.28, pp.8, 2006, https://doi.org/10.5012/bkcs.2007.28.8.1285