DOI QR코드

DOI QR Code

Mesoporous Thin Films with Accessible Pores from Surfaces

  • Lee, U-Hwang (Department of Chemistry, BK-21 School of Molecular Science, Center for Nanotubes and Nanostructured Composites, and SKKU Advanced Institute of Nanotechnology) ;
  • Kim, Min-Hye (Department of Chemistry, BK-21 School of Molecular Science, Center for Nanotubes and Nanostructured Composites, and SKKU Advanced Institute of Nanotechnology) ;
  • Kwon, Young-Uk (Department of Chemistry, BK-21 School of Molecular Science, Center for Nanotubes and Nanostructured Composites, and SKKU Advanced Institute of Nanotechnology)
  • Published : 2006.06.20

Abstract

Among the many forms of mesoporous materials, thin films are important for the potential applications of this class of materials. Compared with the powder forms, however, there has been relatively little work done on thin films probably because of the lack of suitable and generalized synthetic mechanisms established. In this account, we will review the issues on mesoporous thin films with emphasis on the necessity of forming films with accessible pores from the film surfaces and on mesoporous thin films with metal oxides other than silica. Various methods that have been tried to utilize mesoporous thin films with accessible pores as templates for the synthesis of nanostructured materials are reviewed with the emphasis on the advantages of the electrochemical deposition technique.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710 https://doi.org/10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schenkler, J. L. J. Am. Chem. Soc. 1992, 114, 10834 https://doi.org/10.1021/ja00053a020
  3. Kleitz, F.; Kim, T.-W.; Ryoo, R. Bull. Korean Chem. Soc. 2005, 26, 1653 https://doi.org/10.5012/bkcs.2005.26.11.1653
  4. Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109 https://doi.org/10.1016/S1359-0294(03)00002-5
  5. Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2001, 13, 3140 https://doi.org/10.1021/cm0110730
  6. Schuth, F. Chem. Mater. 2001, 13, 3184 https://doi.org/10.1021/cm011030j
  7. Ciesla, U.; Schuth, F. Micropor. Mesopor. Mater. 1999, 27, 131 https://doi.org/10.1016/S1387-1811(98)00249-2
  8. Sayari, A. Chem. Mater. 1996, 8, 1840 https://doi.org/10.1021/cm950585+
  9. Yang, H.; Kuperman, A.; Coombs, N.; MamicheAfara, S.; Ozin, G. A. Nature 1996, 379, 703 https://doi.org/10.1038/379703a0
  10. Ogawa, M. Colloid Polym. Sci. 2003, 281, 665 https://doi.org/10.1007/s00396-002-0818-5
  11. Topoglidis, E.; Discher, B. M.; Moser, C. C.; Dutton, P. L.; Durrant, J. R. Chembiochem 2003, 4, 1332 https://doi.org/10.1002/cbic.200300707
  12. Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. J. Mater. Chem. 2005, 15, 3598 https://doi.org/10.1039/b506072a
  13. Guliants, V. V.; Carreon, M. A.; Lin, Y. S. J. Membr. Sci. 2004, 235, 53 https://doi.org/10.1016/j.memsci.2004.01.019
  14. Pevzner, S.; Regev, O.; Yerushalmi-Rozen, R. Curr. Opin. Colloid Interface Sci. 1999, 4, 420 https://doi.org/10.1016/S1359-0294(00)00018-2
  15. Hunks, W. J.; Ozin, G. A. J. Mater. Chem. 2005, 15, 3716 https://doi.org/10.1039/b504511h
  16. Bartl, M. H.; Boettcher, S. W.; Frindell, K. L.; Stucky, G. D. Acc. Chem. Res. 2005, 38, 263 https://doi.org/10.1021/ar040177o
  17. Shi, J. L.; Hua, Z. L.; Zhang, L. X. J. Mater. Chem. 2004, 14, 795 https://doi.org/10.1039/b315861f
  18. Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969 https://doi.org/10.1002/adma.200300389
  19. Sanchez, C.; Boissiere, C.; Coupe, A.; Goettmann, F.; Grosso, D.; Julian, B.; Llusar, M.; Nicole, L. In Nanoporous Materials IV 2005; Vol. 156, p 19
  20. Lee, U. H.; Lee, H.; Wen, S.; Mho, S.-i.; Kwon, Y.-U. Micropor. Mesopor. Mater. 2006, 88, 48 https://doi.org/10.1016/j.micromeso.2005.08.017
  21. Wark, M.; Tschirch, J.; Bartels, O.; Bahnemann, D.; Rathousky, J. Micropor. Mesopor. Mater. 2005, 84, 247 https://doi.org/10.1016/j.micromeso.2005.05.039
  22. Liu, K. S.; Zhang, M. L.; Shi, K. Y.; Fu, H. G. Mater. Lett. 2005, 59, 3308 https://doi.org/10.1016/j.matlet.2005.05.062
  23. Pan, J. H.; Lee, W. I. New J. Chem. 2005, 29, 841 https://doi.org/10.1039/b417310d
  24. Wang, X. C.; Yu, J. C.; Yip, H. Y.; Wu, L.; Wong, P. K.; Lai, S. Y. Chem.-Eur. J. 2005, 11, 2997 https://doi.org/10.1002/chem.200401248
  25. Tang, J.; Wu, Y. Y.; McFarland, E. W.; Stucky, G. D. Chem. Commun. 2004, 1670
  26. Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Func. Mater. 2004, 14, 335 https://doi.org/10.1002/adfm.200305039
  27. Grosso, D.; Soler-Illia, G.; Crepaldi, E. L.; Cagnol, F.; Sinturel, C.; Bourgeois, A.; Brunet-Bruneau, A.; Amenitsch, H.; Albouy, P. A.; Sanchez, C. Chem. Mater. 2003, 15, 4562 https://doi.org/10.1021/cm031060h
  28. Paik, J. A.; Fan, S. K.; Chang, H.; Kim, C. J.; Wu, M. C.; Dunn, B. J. Electroceram. 2004, 13, 423 https://doi.org/10.1007/s10832-004-5136-5
  29. Crepaldi, E. L.; Soler-Illia, G.; Grosso, D.; Sanchez, M. New J. Chem. 2003, 27, 9 https://doi.org/10.1039/b205497n
  30. Varghese, O. K.; Grimes, C. A. J. Nanosci. Nanotech. 2003, 3, 277 https://doi.org/10.1166/jnn.2003.158
  31. Yun, H. S.; Miyazawa, K.; Honma, I.; Zhou, H. S.; Kuwabara, M. Mater. Sci. Eng. C 2003, 23, 487 https://doi.org/10.1016/S0928-4931(02)00158-3
  32. Crepaldi, E. L.; Soler-Illia, G.; Grosso, D.; Albouy, P. A.; Amenitsch, H.; Sanchez, C. In Nanoporous Materials III 2002; Vol. 141, p 235
  33. Yu, J. C.; Yu, J. G.; Zhao, J. C. Appl. Catal. B-Environ. 2002, 36, 31 https://doi.org/10.1016/S0926-3373(01)00277-6
  34. Yun, H. S.; Miyazawa, K.; Zhou, H. S.; Homma, I.; Kuwabara, M. J. Ceram. Soc. Jpn. 2002, 110, 373 https://doi.org/10.2109/jcersj.110.373
  35. Hwang, Y. K.; Lee, K. C.; Kwon, Y. U. Chem. Commun. 2001, 1738
  36. Frindell, K. L.; Tang, J.; Harreld, J. H.; Stucky, G. D. Chem. Mater. 2004, 16, 3524 https://doi.org/10.1021/cm0341989
  37. Lee, U. H.; Hwang, Y. K.; Kwon, Y. U. In Nanotechnology in Mesostructured Materials 2003; Vol. 146, p 77
  38. Smirnova, N.; Eremenko, A.; Gayvoronskij, V.; Petrik, I.; Gnatyuk, Y.; Krylova, G.; Korchev, A.; Chuiko, A. J. Sol-Gel Sci. Tech. 2004, 32, 357 https://doi.org/10.1007/s10971-004-5817-1
  39. Angelome, P. C.; Soler-Illia, G. Chem. Mater. 2005, 17, 322 https://doi.org/10.1021/cm048559b
  40. Angelome, P. C.; Aldabe-Bilmes, S.; Calvo, M. E.; Crepaldi, E. L.; Grosso, D.; Sanchez, C.; Soler-Illia, G. New J. Chem. 2005, 29, 59 https://doi.org/10.1039/b415324c
  41. Brezesinski, T.; Antonietti, M.; Groenewolt, M.; Pinna, N.; Smarsly, B. New J. Chem. 2005, 29, 237 https://doi.org/10.1039/b412306a
  42. Grosso, D.; Crepaldi, E. L.; Illia, G. J. D.; Cagnol, F.; Baccile, N.; Babonneau, F.; Albouy, P. A.; Amenitsch, H.; Sanchez, C. In Nanotechnology In Mesostructured Materials 2003; Vol. 146, p 281
  43. Bergeron, B. V.; Meyer, G. J. J. Phys. Chem. B 2003, 107, 245 https://doi.org/10.1021/jp026823n
  44. Yang, D.; Qi, L. M.; Ma, J. M. J. Mater. Chem. 2003, 13, 1119 https://doi.org/10.1039/b301077e
  45. Galoppini, E.; Guo, W. Z.; Zhang, W.; Hoertz, P. G.; Qu, P.; Meyer, G. J. J. Am. Chem. Soc. 2002, 124, 7801 https://doi.org/10.1021/ja025840n
  46. Zhang, Y. W.; Yang, Y.; Tian, S. J.; Liao, C. S.; Yan, C. H. J. Mater. Chem. 2002, 12, 219 https://doi.org/10.1039/b106876h
  47. Gao, X. T.; Wachs, I. E. J. Phys. Chem. B 2000, 104, 1261 https://doi.org/10.1021/jp992867t
  48. Moller, M. T.; Asaftei, S.; Corr, D.; Ryan, M.; Walder, L. Adv. Mater. 2004, 16, 1558 https://doi.org/10.1002/adma.200400198
  49. Lundberg, M.; Skarman, B.; Cesar, F.; Wallenberg, L. R. Micropor. Mesopor. Mater. 2002, 54, 97 https://doi.org/10.1016/S1387-1811(02)00356-6
  50. Brezesinski, T.; Smarsly, B.; Iimura, K.; Grosso, D.; Boissiere, C.; Amenitsch, H.; Antonietti, M.; Sanchez, C. Small 2005, 1, 889 https://doi.org/10.1002/smll.200500024
  51. Hyodo, T.; Abe, S.; Shimizu, Y.; Egashira, M. Sensors Actuat. B-Chem. 2003, 93, 590 https://doi.org/10.1016/S0925-4005(03)00208-9
  52. Hyodo, T.; Nishida, N.; Shimizu, Y.; Egashira, M. Sensors Actuat. B-Chem. 2002, 83, 209 https://doi.org/10.1016/S0925-4005(01)01042-5
  53. Sreethawong, T.; Ngamsinlapasathian, S.; Suzuki, Y.; Yoshikawa, S. J. Mol. Catal. A-Chem. 2005, 235, 1 https://doi.org/10.1016/j.molcata.2005.03.021
  54. de Zarate, D. O.; Boissiere, C.; Grosso, D.; Albouy, P. A.; Amenitsch, H.; Amoros, P.; Sanchez, C. New J. Chem. 2005, 29, 141 https://doi.org/10.1039/b416184j
  55. Grosso, D.; Boissiere, C.; Smarsly, B.; Brezesinski, T.; Pinna, N.; Albouy, P. A.; Amenitsch, H.; Antonietti, M.; Sanchez, C. Nature Mater. 2004, 3, 787 https://doi.org/10.1038/nmat1206
  56. Petkov, N.; Holzl, M.; Metzger, T. H.; Mintova, S.; Bein, T. J. Phys. Chem. B 2005, 109, 4485 https://doi.org/10.1021/jp0444969
  57. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Y. Adv. Mater. 1999, 11, 579 https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  58. Crepaldi, E. L.; Soler-Illia, G.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. J. Am. Chem. Soc. 2003, 125, 9770 https://doi.org/10.1021/ja030070g
  59. Yu, J. C.; Wang, X. C.; Fu, X. Z. Chem. Mater. 2004, 16, 1523 https://doi.org/10.1021/cm049955x
  60. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater. 2002, 14, 3284 https://doi.org/10.1021/cm011209u
  61. Matheron, M.; Bourgeois, A.; Brunet-Bruneau, A.; Albouy, P. A.; Biteau, J.; Gacoin, T.; Boilot, J. P. J. Mater. Chem. 2005, 15, 4741 https://doi.org/10.1039/b510554d
  62. Pan, J. H.; Lee, W. I. Bull. Korean Chem. Soc. 2005, 26, 418 https://doi.org/10.5012/bkcs.2005.26.3.418
  63. Hwang, Y. K.; Patil, K. R.; Jhung, S. H.; Chang, J. S.; Ko, Y. J.; Park, S. E. Micropor. Mesopor. Mater. 2005, 78, 245 https://doi.org/10.1016/j.micromeso.2004.10.026
  64. Luo, H. M.; Wang, D. H.; He, J. B.; Lu, Y. F. J. Phys. Chem. B 2005, 109, 1919 https://doi.org/10.1021/jp045554t
  65. Jung, J. I.; Bae, J. Y.; Bae, B. S. J. Sol-Gel Sci. Tech. 2004, 31, 179 https://doi.org/10.1023/B:JSST.0000047983.18386.b4
  66. Shimura, N.; Ogawa, M. Bull. Chem. Soc. Jpn. 2004, 77, 1599 https://doi.org/10.1246/bcsj.77.1599
  67. Hayward, R. C.; Alberius, P. C. A.; Kramer, E. J.; Chmelka, B. F. Langmuir 2004, 20, 5998 https://doi.org/10.1021/la030442z
  68. Jung, J. I.; Bae, J. Y.; Bae, B. S. J. Mater. Chem. 2004, 14, 1988 https://doi.org/10.1039/b401774a
  69. Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. J. Mater. Chem. 2004, 14, 1879 https://doi.org/10.1039/b316033e
  70. Bae, J. Y.; Park, O. H.; Jung, J. I.; Ranjit, K. T.; Bae, B. S. Micropor. Mesopor. Mater. 2004, 67, 265 https://doi.org/10.1016/j.micromeso.2003.11.011
  71. Dunphy, D. R.; Singer, S.; Cook, A. W.; Smarsly, B.; Doshi, D. A.; Brinker, C. J. Langmuir 2003, 19, 10403 https://doi.org/10.1021/la035183s
  72. Cagnol, F.; Grosso, D.; Soler-Illia, G.; Crepaldi, E. L.; Babonneau, F.; Amenitsch, H.; Sanchez, C. J. Mater. Chem. 2003, 13, 61 https://doi.org/10.1039/b209640b
  73. Besson, S.; Gacoin, T.; Ricolleau, C.; Jacquiod, C.; Boilot, J. P. J. Mater. Chem. 2003, 13, 404 https://doi.org/10.1039/b206698j
  74. Petkov, N.; Mintova, S.; Jean, B.; Metzger, T.; Bein, T. Mater. Sci. Eng. C 2003, 23, 827 https://doi.org/10.1016/j.msec.2003.09.134
  75. Petkov, N.; Mintova, S.; Karaghiosoff, K.; Bein, T. Mater. Sci. Eng. C 2003, 23, 145 https://doi.org/10.1016/S0928-4931(02)00249-7
  76. Ruggles, J. L.; Gilbert, E. P.; Holt, S. A.; Reynolds, P. A.; White, J. W. Langmuir 2003, 19, 793 https://doi.org/10.1021/la0265833
  77. Shioya, Y.; Ikeue, K.; Ogawa, M.; Anpo, M. Appl. Catal. A.-Gen. 2003, 254, 251 https://doi.org/10.1016/S0926-860X(03)00487-3
  78. Yantasee, W.; Lin, Y. H.; Li, X. H.; Fryxell, G. E.; Zemanian, T. S.; Viswanathan, V. V. Analyst 2003, 128, 899 https://doi.org/10.1039/b303973k
  79. Grosso, D.; Babonneau, F.; Albouy, P. A.; Amenitsch, H.; Balkenende, A. R.; Brunet-Bruneau, A.; Rivory, J. Chem. Mater. 2002, 14, 931 https://doi.org/10.1021/cm011255u
  80. Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M. Catal. Lett. 2002, 80, 111 https://doi.org/10.1023/A:1015400223708
  81. Park, G. S.; Ahn, C. W.; Kim, M. W. J. Am. Ceram. Soc. 2002, 85, 2542 https://doi.org/10.1111/j.1151-2916.2002.tb00492.x
  82. Faget, L.; Berman, A.; Regev, O. Thin Solid Films 2001, 386, 6 https://doi.org/10.1016/S0040-6090(00)01924-6
  83. Ogawa, M.; Ikeue, K.; Anpo, M. Chem. Mater. 2001, 13, 2900 https://doi.org/10.1021/cm0102281
  84. Ogawa, M.; Masukawa, N. Micropor. Mesopor. Mater. 2000, 38, 35 https://doi.org/10.1016/S1387-1811(99)00297-8
  85. Lu, Y. F.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W. L.; Guo, Y. X.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364 https://doi.org/10.1038/38699
  86. Yamauchi, Y.; Sawada, M.; Noma, T.; Ito, H.; Furumi, S.; Sakka, Y.; Kuroda, K. J. Mater. Chem. 2005, 15, 1137 https://doi.org/10.1039/b418478e
  87. Chen, B. C.; Lin, H. P.; Chao, M. C.; Mou, C. Y.; Tang, C. Y. Adv. Mater. 2004, 16, 1657 https://doi.org/10.1002/adma.200306327
  88. Freer, E. M.; Krupp, L. E.; Hinsberg, W. D.; Rice, P. M.; Hedrick, J. L.; Cha, J. N.; Miller, R. D.; Kim, H. C. Nano Lett. 2005, 5, 2014 https://doi.org/10.1021/nl051517h
  89. Koganti, V. R.; Rankin, S. E. J. Phys. Chem. B 2005, 109, 3279 https://doi.org/10.1021/jp045037a
  90. Andersson, M.; Birkedal, H.; Franklin, N. R.; Ostomel, T.; Boettcher, S.; Palmqvist, A. E. C.; Stucky, G. D. Chem. Mater. 2005, 17, 1409 https://doi.org/10.1021/cm0485761
  91. Gu, J. L.; Shi, J. L.; Xiong, L. M.; Chen, H. R.; Ruan, M. L. Micropor. Mesopor. Mater. 2004, 74, 199 https://doi.org/10.1016/j.micromeso.2004.06.019
  92. Gu, J. L.; Shi, J. L.; Hua, Z.; Xiong, L. M.; Zhang, L. X.; Li, L. Chem. Lett. 2005, 34, 114 https://doi.org/10.1246/cl.2005.114
  93. Gu, J. L.; Shi, J. L.; Xiong, L. M.; Chen, H. R.; Li, L.; Ruan, M. L. Solid State Sci. 2004, 6, 747 https://doi.org/10.1016/j.solidstatesciences.2004.03.034
  94. Kazakova, O.; Erts, D.; Crowley, T. A.; Kulkarni, J. S.; Holmes, J. D. J. Magn. Magn. Mater. 2005, 286, 171 https://doi.org/10.1016/j.jmmm.2004.09.128
  95. Patil, K. R.; Hwang, Y. K.; Kim, D. K.; Chang, J. S.; Park, S. E. Bull. Korean Chem. Soc. 2005, 26, 1025 https://doi.org/10.5012/bkcs.2005.26.7.1025
  96. Buso, D.; Falcaro, P.; Costacurta, S.; Guglielmi, M.; Martucci, A.; Innocenzi, P.; Malfatti, L.; Bello, V.; Mattei, G.; Sada, C.; Amenitsch, H.; Gerdova, I.; Hache, A. Chem. Mater. 2005, 17, 4965 https://doi.org/10.1021/cm050850j
  97. Kouzema, A. V.; Froba, M.; Chen, L. M.; Klar, P. J.; Heimbrodt, W. Adv. Func. Mater. 2005, 15, 168 https://doi.org/10.1002/adfm.200400115
  98. Bartl, M. H.; Puls, S. P.; Tang, J.; Lichtenegger, H. C.; Stucky, G. D. Angew. Chem., Int. Ed. Engl. 2004, 43, 3037 https://doi.org/10.1002/anie.200453840
  99. Ziegler, K. J.; Polyakov, B.; Kulkarni, J. S.; Crowley, T. A.; Ryan, K. M.; Morris, M. A.; Erts, D.; Holmes, J. D. J. Mater. Chem. 2004, 14, 585 https://doi.org/10.1039/b311585b
  100. Ziegler, K.; Ryan, K. M.; Rice, R.; Crowley, T.; Erts, D.; Olin, H.; Patterson, J.; Spalding, T. R.; Holmes, J. D.; Morris, M. A. Faraday Discuss. 2004, 125, 311 https://doi.org/10.1039/b305156k
  101. Erts, D.; Polyakov, B.; Saks, E.; Olin, H.; Ryen, L.; Ziegler, K.; Holmes, J. D. In Functional Nanomaterials for Optoelectronics and Other Applications 2003; Vol. 99-100, p 109
  102. Yu, J. C.; Wang, X. C.; Wu, L.; Ho, W. K.; Zhang, L. Z.; Zhou, G. T. Adv. Func. Mater. 2004, 14, 1178 https://doi.org/10.1002/adfm.200305145
  103. Waters, J. P.; Smyth-Boyle, D.; Govender, K.; Green, A.; Durrant, J.; O'Brien, P. Chem. Vapor. Depos. 2005, 11, 254 https://doi.org/10.1002/cvde.200406358
  104. Cohen, Y.; Landskron, K.; Tetreault, N.; Fournier-Bidoz, S.; Hatton, B.; Ozin, G. A. Adv. Func. Mater. 2005, 15, 593 https://doi.org/10.1002/adfm.200400069
  105. Xiong, C. R.; Balkus, K. J. Chem. Mater. 2005, 17, 5136 https://doi.org/10.1021/cm050819h
  106. Perez, M. D.; Otal, E.; Bilmes, S. A.; Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Langmuir 2004, 20, 6879 https://doi.org/10.1021/la0497898
  107. Shi, K. Y.; Chi, Y. J.; Yu, H. T.; Xin, B. F.; Fu, H. G. J. Phys. Chem. B 2005, 109, 2546 https://doi.org/10.1021/jp0463316
  108. Gu, J. L.; Shi, J. L.; Chen, H. R.; Xiong, L. M.; Shen, W. H.; Ruan, M. L. Chem. Lett. 2004, 33, 828 https://doi.org/10.1246/cl.2004.828
  109. Kim, M. H.; Kwon, Y.-U. Solid State Phenom. in press
  110. Lee, U.-H.; Lee, J.; Jung, D.-Y.; Kwon, Y.-U. Adv. Mater., submitted
  111. Lee, U.-H.; Park, J. B.; Kim, S.-K.; Kwon, Y.-U. NANO, in press

Cited by

  1. Microscale Controlled Electrogeneration of Patterned Mesoporous Silica Thin Films vol.23, pp.24, 2011, https://doi.org/10.1021/cm202668t
  2. Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2271
  3. Mesoporous Zirconia Thin Films with Three-Dimensional Pore Structures and Their Application to Electrochemical Glucose Detection vol.5, pp.9, 2013, https://doi.org/10.1021/am303248p
  4. Vertically-aligned Mesoporous Silica Films vol.640, pp.3-4, 2013, https://doi.org/10.1002/zaac.201300442
  5. Three-Dimensional Titanium Dioxide Nanomaterials vol.114, pp.19, 2014, https://doi.org/10.1021/cr500201c
  6. Electro-Assisted Self-Assembly of Cetyltrimethylammonium-Templated Silica Films in Aqueous Media: Critical Effect of Counteranions on the Morphology and Mesostructure Type vol.26, pp.5, 2014, https://doi.org/10.1021/cm404014c
  7. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials vol.19, pp.7, 2015, https://doi.org/10.1007/s10008-014-2570-4
  8. Modification of inorganic porous materials as gene vectors: an overview vol.22, pp.4, 2015, https://doi.org/10.1007/s10934-015-9966-0
  9. Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study vol.31, pp.47, 2015, https://doi.org/10.1021/acs.langmuir.5b02961
  10. Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting vol.16, pp.12, 2016, https://doi.org/10.1021/acs.nanolett.6b02487
  11. High-Density Arrays of Platinum Nanostructures and Their Hierarchical Patterns vol.18, pp.21, 2006, https://doi.org/10.1002/adma.200600271
  12. Mesoporous Titania Thin Film with Highly Ordered and Fully Accessible Vertical Pores and Crystalline Walls vol.3, pp.5, 2008, https://doi.org/10.1002/asia.200700331
  13. Facile and adaptable synthesis method of mesostructured silica thin films vol.18, pp.16, 2008, https://doi.org/10.1039/b718871d
  14. A Mesoporous Silica Thin Film as Uptake Host for Guest Molecules with Retarded Release Kinetics vol.9, pp.10, 2008, https://doi.org/10.1002/cphc.200700791
  15. Critical Effect of Film Thickness on Preconcentration Electroanalysis with Oriented Mesoporous Silica Modified Electrodes vol.31, pp.2, 2019, https://doi.org/10.1002/elan.201800533
  16. Porous Thin Films of Functionalized Mesoporous Silica Nanoparticles vol.2, pp.11, 2006, https://doi.org/10.1021/nn800505g
  17. Method to Increase the Surface Area of Titania Films and Its Effects on the Performance of Dye-Sensitized Solar Cells vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.463
  18. Vapor-Sensitive Bragg Mirrors and Optical Isotherms from Mesoporous Nanoparticle Suspensions vol.3, pp.7, 2009, https://doi.org/10.1021/nn800911c
  19. Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues vol.20, pp.32, 2006, https://doi.org/10.1039/c0jm00305k
  20. HARD TEMPLATES FOR FABRICATION OF NANOSTRUCTURED FILMS vol.5, pp.2, 2006, https://doi.org/10.1142/s1793292010001950
  21. Synthesis of mesoporous titania thin films with vertical pore channels and thick and crystalline walls vol.145, pp.1, 2006, https://doi.org/10.1016/j.micromeso.2011.05.008
  22. Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities vol.5, pp.1, 2006, https://doi.org/10.1021/nn102767d
  23. Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications vol.170, pp.2, 2006, https://doi.org/10.1016/j.cej.2010.11.040
  24. Electrochemically Assisted Generation of Highly Ordered Azide‐Functionalized Mesoporous Silica for Oriented Hybrid Films vol.126, pp.11, 2006, https://doi.org/10.1002/ange.201309447
  25. Electrochemically Assisted Generation of Highly Ordered Azide‐Functionalized Mesoporous Silica for Oriented Hybrid Films vol.53, pp.11, 2006, https://doi.org/10.1002/anie.201309447
  26. Multi-layered, vertically-aligned and functionalized mesoporous silica films generated by sequential electrochemically assisted self-assembly vol.237, pp.None, 2006, https://doi.org/10.1016/j.electacta.2017.03.220
  27. Microstructure Evolution of Ag/TiO2 Thin Film vol.7, pp.1, 2006, https://doi.org/10.3390/magnetochemistry7010014
  28. Synthesis of Vertically Aligned Porous Silica Thin Films Functionalized by Silver Ions vol.22, pp.14, 2006, https://doi.org/10.3390/ijms22147505
  29. Electroinduced Surfactant Self-Assembly Driven to Vertical Growth of Oriented Mesoporous Films vol.54, pp.18, 2006, https://doi.org/10.1021/acs.accounts.1c00233